10 research outputs found

    Transient Storage as a Function of Geomorphology, Discharge, and Permafrost Active Layer Conditions in Arctic Tundra Streams

    Get PDF
    Transient storage of solutes in hyporheic zones or other slow-moving stream waters plays an important role in the biogeochemical processes of streams. While numerous studies have reported a wide range of parameter values from simulations of transient storage, little field work has been done to investigate the correlations between these parameters and shifts in surface and subsurface flow conditions. In this investigation we use the stream properties of the Arctic (namely, highly varied discharges, channel morphologies, and subchannel permafrost conditions) to isolate the effects of discharge, channel morphology, and potential size of the hyporheic zone on transient storage. We repeated stream tracer experiments in five morphologically diverse tundra streams in Arctic Alaska during the thaw season (May–August) of 2004 to assess transient storage and hydrologic characteristics. We compared transient storage model parameters to discharge (Q), the Darcy-Weisbach friction factor (f), and unit stream power (ω). Across all studied streams, permafrost active layer depths (i.e., the potential extent of the hyporheic zone) increased throughout the thaw season, and discharges and velocities varied dramatically with minimum ranges of eight-fold and four-fold, respectively. In all reaches the mean storage residence time (tstor) decreased exponentially with increasing Q, but did not clearly relate to permafrost active layer depths. Furthermore, we found that modeled transient storage metrics (i.e., tstor, storage zone exchange rate (αOTIS), and hydraulic retention (Rh)) correlated better with channel hydraulic descriptors such as f and ω than they did with Q or channel slope. Our results indicate that Q is the first-order control on transient storage dynamics of these streams, and that f and ω are two relatively simple measures of channel hydraulics that may be important metrics for predicting the response of transient storage to perturbations in discharge and morphology in a given stream

    Transport of E. coli D21g with runoff water under different solution chemistry conditions and surface slopes

    Full text link
    Tracer and indicator microbe runoff experiments were conducted to investigate the influence of solution chemistry on the transport, retention, and release of Escherichia coli D21g. Experiments were conducted in a chamber (2.25 m long, 0.15 m wide, and 0.16 m high) packed with ultrapure quartz sand (to a depth of 0.10 m) that was placed on a metal frame at slopes of 5.6%, 8.6%, or 11.8%. Runoff studies were initiated by adding a step pulse of salt tracer or D21g suspension at a steady flow rate to the top side of the chamber and then monitoring the runoff effluent concentrations. The runoff breakthrough curves (BTCs) were asymmetric and exhibited significant amounts of concentration tailing. The peak concentration levels were lower and the concentration tailing was higher with increasing chamber slope because of greater amounts of exchange with the sand and/or extents of physical nonequilibrium (e.g., water flow in rills and incomplete mixing) in the runoff layer. Lower amounts of tailing in the runoff BTC and enhanced D21g retention in the sand occurred when the solution ionic strength (IS) was 100 mM NaCl compared with 1 mM NaCl, due to compression of the double layer thickness which eliminated the energy barrier to attachment. Retained cells were slowly released to the runoff water when the IS of the runoff water was reduced to deionized water. The amount and rate of cell release was greatest at the highest chamber slope, which controlled the amount of exchange with the sand and/or the extent of physical nonequilibrium in the runoff layer, and the amount of retained cells. The observed runoff BTCs were well described using a transient storage model, but fitted parameters were not always physically realistic. A model that accounted for the full coupling between flow and transport in the runoff and sand layers provided useful information on exchange processes at the sand surface, but did not accurately describe the runoff BTCs which were influenced by physical nonequilibrium in the runoff layer

    Etude biogéochimique d'une rivière de Wallonie à Chimay

    No full text
    Doctorat en sciences agronomiques (sciences du sol) - UCL, 198

    Etude biog ochimique d'une rivi(re de Wallonie @ Chimay

    No full text
    SIGLEBSE B224656S / UCL - Université Catholique de LouvainBEBelgiu

    References

    No full text
    corecore