788 research outputs found

    Seasonal variation in phosphorus concentration–discharge hysteresis inferred from high-frequency in situ monitoring

    Get PDF
    High-resolution in situ total phosphorus (TP), total reactive phosphorus (TRP) and turbidity (TURB) time series are presented for a groundwater-dominated agricultural catchment. Meta-analysis of concentration–discharge (c–q) intra-storm signatures for 61 storm events revealed dominant hysteretic patterns with similar frequency of anti-clockwise and clockwise responses; different determinands (TP, TRP, TURB) behaved similarly. We found that the c–q loop direction is controlled by seasonally variable flow discharge and temperature whereas the magnitude is controlled by antecedent rainfall. Anti-clockwise storm events showed lower flow discharge and higher temperature compared to clockwise events. Hydrological controls were more important for clockwise events and TP and TURB responses, whereas in-stream biogeochemical controls were important for anti-clockwise storm events and TRP responses. Based on the best predictors of the direction of the hysteresis loops, we calibrated and validated a simple fuzzy logic inference model (FIS) to determine likely direction of the c–q responses. We show that seasonal and inter-storm succession in clockwise and anti-clockwise responses corroborates the transition in P transport from a chemostatic to an episodic regime. Our work delivers new insights for the evidence base on the complexity of phosphorus dynamics. We show the critical value of high-frequency in situ observations in advancing understanding of freshwater biogeochemical processes

    Unravelling organic matter and nutrient biogeochemistry in groundwater-fed rivers under baseflow conditions:uncertainty in in situ high-frequency analysis

    Get PDF
    In agricultural catchments, diffuse nutrient fluxes (mainly nitrogen N and phosphorus P), are observed to pollute receiving waters and cause eutrophication. Organic matter (OM) is important in mediating biogeochemical processes in freshwaters. Time series of the variation in nutrient and OM loads give insights into flux processes and their impact on biogeochemistry but are costly to maintain and challenging to analyse for elements that are highly reactive in the environment. We evaluated the capacity of the automated monitoring to capture typically low baseflow concentrations of the reactive forms of nutrients and OM: total reactive phosphorus (TRP), nitrate nitrogen (NO3-N) and tryptophan-like fluorescence (TLF). We compared the performance of in situ monitoring (wet chemistry analyser, UV–vis and fluorescence sensors) and automated grab sampling without instantaneous analysis using autosamplers. We found that automatic grab sampling shows storage transformations for TRP and TLF and do not reproduce the diurnal concentration pattern captured by the in situ analysers. The in situ TRP and fluorescence analysers respond to temperature variation and the relationship is concentration-dependent. Accurate detection of low P concentrations is particularly challenging due to large errors associated with both the in situ and autosampler measurements. Aquatic systems can be very sensitive to even low concentrations of P typical of baseflow conditions. Understanding transformations and measurement variability in reactive forms of nutrients and OM associated with in situ analysis is of great importance for understanding in-stream biogeochemical functioning and establishing robust monitoring protocols

    Fine Colloids ‘Carry’ Diffuse Water Contaminants from Grasslands

    Get PDF
    The transport of diffuse pollutants from grassland has traditionally been described by the operationally defined threshold of greater, or smaller than a nominated membrane filter size. Most commonly this has been a 0.45 μm threshold to define ‘solute’ and ‘particulate’ transport. In this paper we shall use phosphorus (P) to help provide an example of the importance of colloid-facilitated transport

    Development and testing of a risk indexing framework to determine field-scale critical source areas of faecal bacteria on grassland.

    Get PDF
    This paper draws on lessons from a UK case study in the management of diffuse microbial pollution from grassland farm systems in the Taw catchment, south west England. We report on the development and preliminary testing of a field-scale faecal indicator organism risk indexing tool (FIORIT). This tool aims to prioritise those fields most vulnerable in terms of their risk of contributing FIOs to water. FIORIT risk indices were related to recorded microbial water quality parameters (faecal coliforms [FC] and intestinal enterococci [IE]) to provide a concurrent on-farm evaluation of the tool. There was a significant upward trend in Log[FC] and Log[IE] values with FIORIT risk score classification (r2 =0.87 and 0.70, respectively and P<0.01 for both FIOs). The FIORIT was then applied to 162 representative grassland fields through different seasons for ten farms in the case study catchment to determine the distribution of on-farm spatial and temporal risk. The high risk fields made up only a small proportion (1%, 2%, 2% and 3% for winter, spring, summer and autumn, respectively) of the total number of fields assessed (and less than 10% of the total area), but the likelihood of the hydrological connection of high FIO source areas to receiving watercourses makes them a priority for mitigation efforts. The FIORIT provides a preliminary and evolving mechanism through which we can combine risk assessment with risk communication to end-users and provides a framework for prioritising future empirical research. Continued testing of FIORIT across different geographical areas under both low and high flow conditions is now needed to initiate its long term development into a robust indexing tool

    Transfer of Escherichia coli to water from drained and undrained grassland after grazing.

    Get PDF
    The aim of this study was to determine the load of Escherichia coli transferred via drainage waters from drained and undrained pasture following a grazing period. Higher concentrations (ranging between 104 and 103 CFU g-1) of E. coli persisted in soil for up to 60 days beyond the point where cattle were removed from the plots, but these eventually declined in the early months of spring to concentrations less than 102 CFU g-1. The decline reflects the combined effect of cell depletion from the soil store through both wash-out and die-off of E. coli. No difference (P 0.05) was observed in E. coli loads exported from drained and undrained plots. Similarly, no difference (P 0.05) was observed in E. coli concentrations in drainage waters of mole drain flow and overland plus subsurface interflow. Intermittent periods of elevated discharge associated with storm events mobilised E. coli at higher concentrations (e.g. in excess of 400 CFU ml-1) than observed during low flow conditions (often <25 CFU ml-1). The combination of high discharge and cell concentrations resulted in the export of E. coli loads from drained and undrained plots exceeding 106 CFU L-1 s-1. The results highlight the potential for drained land to export E. coli loads comparable to those transferred from undrained pasture

    Peatland hydrology and carbon release: why small-scale process matters

    Get PDF
    Peatlands cover over 400 million hectares of the Earth's surface and store between one-third and one-half of the world's soil carbon pool. The long-term ability of peatlands to absorb carbon dioxide from the atmosphere means that they play a major role in moderating global climate. Peatlands can also either attenuate or accentuate flooding. Changing climate or management can alter peatland hydrological processes and pathways for water movement across and below the peat surface. It is the movement of water in peats that drives carbon storage and flux. These small-scale processes can have global impacts through exacerbated terrestrial carbon release. This paper will describe advances in understanding environmental processes operating in peatlands. Recent (and future) advances in high-resolution topographic data collection and hydrological modelling provide an insight into the spatial impacts of land management and climate change in peatlands. Nevertheless, there are still some major challenges for future research. These include the problem that impacts of disturbance in peat can be irreversible, at least on human time-scales. This has implications for the perceived success and understanding of peatland restoration strategies. In some circumstances, peatland restoration may lead to exacerbated carbon loss. This will also be important if we decide to start to create peatlands in order to counter the threat from enhanced atmospheric carbon

    Impact of low intensity summer rainfall on E. coli-discharge event dynamics with reference to sample acquisition and storage

    Get PDF
    Understanding the role of different rainfall scenarios on faecal indicator organism (FIO) dynamics under variable field conditions is important to strengthen the evidence base on which regulators and land managers can base informed decisions regarding diffuse microbial pollution risks. We sought to investigate the impact of low intensity summer rainfall on Escherichia coli-discharge (Q) patterns at the headwater catchment scale in order to provide new empirical data on FIO concentrations observed during baseflow conditions. In addition, we evaluated the potential impact of using automatic samplers to collect and store freshwater samples for subsequent microbial analysis during summer storm sampling campaigns. The temporal variation of E. coli concentrations with Q was captured during six events throughout a relatively dry summer in central Scotland. The relationship between E. coli concentration and Q was complex with no discernible patterns of cell emergence with Q that were repeated across all events. On several occasions, an order of magnitude increase in E. coli concentrations occurred even with slight increases in Q, but responses were not consistent and highlighted the challenges of attempting to characterise temporal responses of E. coli concentrations relative to Q during low intensity rainfall. Cross-comparison of E. coli concentrations determined in water samples using simultaneous manual grab and automated sample collection was undertaken with no difference in concentrations observed between methods. However, the duration of sample storage within the autosampler unit was found to be more problematic in terms of impacting on the representativeness of microbial water quality, with unrefrigerated autosamplers exhibiting significantly different concentrations of E. coli relative to initial samples after 12-h storage. The findings from this study provide important empirical contributions to the growing evidence base in the field of catchment microbial dynamics

    The interplay between transport and reaction rates as controls on nitrate attenuation in permeable, streambed sediments

    Get PDF
    Anthropogenic nitrogen fixation and subsequent use of this nitrogen as fertilizer has greatly disturbed the global nitrogen cycle. Rivers are recognized hotspots of nitrogen removal in the landscape as interaction between surface water and sediments creates heterogeneous redox environments conducive for nitrogen transformations. Our understanding of riverbed nitrogen dynamics to date comes mainly from shallow sediments or hyporheic exchange flow pathways with comparatively little attention paid to groundwater-fed, gaining reaches. We have used 15N techniques to quantify in situ rates of nitrate removal to 1m depth within a groundwater-fed riverbed where subsurface hydrology ranged from strong upwelling to predominantly horizontal water fluxes. We combine these rates with detailed hydrologic measurements to investigate the interplay between biogeochemical activity and water transport in controlling nitrogen attenuation along upwelling flow pathways. Nitrate attenuation occurred via denitrification rather than dissimilatory nitrate reduction to ammonium or anammox (range = 12 to >17000 nmol 15N L-1 h-1). Overall, nitrate removal within the upwelling groundwater was controlled by water flux rather than reaction rate (i.e. Damköhler numbers 80% of nitrate removal occurs within sediments not exposed to hyporheic exchange flows under baseflow conditions, illustrating the importance of deep sediments as nitrate sinks in upwelling systems

    Evaluating the risk of non-point source pollution from biosolids: integrated modelling of nutrient losses at field and catchment scales

    Get PDF
    International audienceA semi-distributed model, INCA, has been developed to determine the fate and distribution of nutrients in terrestrial and aquatic systems. The model simulates nitrogen and phosphorus processes in soils, groundwaters and river systems and can be applied in a semi-distributed manner at a range of scales. In this study, the model has been applied at field to sub-catchment to whole catchment scale to evaluate the behaviour of biosolid-derived losses of P in agricultural systems. It is shown that process-based models such as INCA, applied at a wide range of scales, reproduce field and catchment behaviour satisfactorily. The INCA model can also be used to generate generic information for risk assessment. By adjusting three key variables: biosolid application rates, the hydrological connectivity of the catchment and the initial P-status of the soils within the model, a matrix of P loss rates can be generated to evaluate the behaviour of the model and, hence, of the catchment system. The results, which indicate the sensitivity of the catchment to flow paths, to application rates and to initial soil conditions, have been incorporated into a Nutrient Export Risk Matrix (NERM)

    Diffusive equilibrium in thin films provides evidence of suppression of hyporheic exchange and large-scale nitrate transformation in a groundwater-fed river

    Get PDF
    The hyporheic zone of riverbed sediments has the potential to attenuate nitrate from upwelling, polluted groundwater. However, the coarse-scale (5–10 cm) measurement of nitrogen biogeochemistry in the hyporheic zone can often mask fine-scale (<1 cm) biogeochemical patterns, especially in near-surface sediments, leading to incomplete or inaccurate representation of the capacity of the hyporheic zone to transform upwelling NO3−. In this study, we utilised diffusive equilibrium in thin-films samplers to capture high resolution (cm-scale) vertical concentration profiles of NO3−, SO42−, Fe and Mn in the upper 15 cm of armoured and permeable riverbed sediments. The goal was to test whether nitrate attenuation was occurring in a sub-reach characterised by strong vertical (upwelling) water fluxes. The vertical concentration profiles obtained from diffusive equilibrium in thin-films samplers indicate considerable cm-scale variability in NO3− (4.4 ± 2.9 mg N/L), SO42− (9.9 ± 3.1 mg/l) and dissolved Fe (1.6 ± 2.1 mg/l) and Mn (0.2 ± 0.2 mg/l). However, the overall trend suggests the absence of substantial net chemical transformations and surface-subsurface water mixing in the shallow sediments of our sub-reach under baseflow conditions. The significance of this is that upwelling NO3−-rich groundwater does not appear to be attenuated in the riverbed sediments at <15 cm depth as might occur where hyporheic exchange flows deliver organic matter to the sediments for metabolic processes. It would appear that the chemical patterns observed in the shallow sediments of our sub-reach are not controlled exclusively by redox processes and/or hyporheic exchange flows. Deeper-seated groundwater fluxes and hydro-stratigraphy may be additional important drivers of chemical patterns in the shallow sediments of our study sub-reach. Copyright © 2014 John Wiley & Sons, Ltd
    • …
    corecore