8,601 research outputs found

    External losses in photoemission from strongly correlated quasi two-dimensional solids

    Full text link
    New expressions are derived for photoemission, which allow experimental electron energy loss data to be used for estimating losses in photoemission. The derivation builds on new results for dielectric response and mean free paths of strongly correlated systems of two dimensional layers. Numerical evaluations are made for Bi2Sr2CaCu2O8Bi_{2}Sr_{2}CaCu_{2}O_{8} (Bi2212) by using a parametrized loss function. The mean free path for Bi2212 is calculated and found to be substantially larger than obtained by Norman et al in a recent paper. The photocurrent is expressed as the convolution of the intrinsic approximation for the current from a specific 2D layer with an effective loss function. The observed current is the sum of such currents from the first few layers. The photo electron from a specific CuOCuO layer is found to excite low energy acoustic plasmon modes due to the coupling between the CuOCuO layers. These modes give rise to an asymmetric power law broadening of the photo current an isolated two dimensional layer would have given. We define an asymmetry index where a contribution from a Luttinger lineshape is additive to the contribution from our broadening function. Already the loss effect considered here gives broadening comparable to what is observed experimentally. A superconductor with a gapped loss function is predicted to have a peak-dip-hump lineshape similar to what has been observed, and with the same qualitative behavior as predicted in the recent work by Campuzano et al.Comment: 17 pages, 10 figure

    GW band structure of InAs and GaAs in the wurtzite phase

    Full text link
    We report the first quasiparticle calculations of the newly observed wurtzite polymorph of InAs and GaAs. The calculations are performed in the GW approximation using plane waves and pseudopotentials. For comparison we also report the study of the zinc-blende phase within the same approximations. In the InAs compound the In 4d electrons play a very important role: whether they are frozen in the core or not, leads either to a correct or a wrong band ordering (negative gap) within the Local Density Appproximation (LDA). We have calculated the GW band structure in both cases. In the first approach, we have estimated the correction to the pd repulsion calculated within the LDA and included this effect in the calculation of the GW corrections to the LDA spectrum. In the second case, we circumvent the negative gap problem by first using the screened exchange approximation and then calculating the GW corrections starting from the so obtained eigenvalues and eigenfunctions. This approach leads to a more realistic band-structure and was also used for GaAs. For both InAs and GaAs in the wurtzite phase we predict an increase of the quasiparticle gap with respect to the zinc-blende polytype.Comment: 9 pages, 6 figures, 3 table

    Density dependent spin susceptibility and effective mass in interacting quasi-two dimensional electron systems

    Full text link
    Motivated by recent experimental reports, we carry out a Fermi liquid many-body calculation of the interaction induced renormalization of the spin susceptibility and effective mass in realistic two dimensional (2D) electron systems as a function of carrier density using the leading-order `ladder-bubble' expansion in the dynamically screened Coulomb interaction. Using realistic material parameters for various semiconductor-based 2D systems, we find reasonable quantitative agreement with recent experimental susceptibility and effective mass measurements. We point out a number of open questions regarding quantitative aspects of the comparison between theory and experiment in low-density 2D electron systems

    Dependence of electronic polarization on octahedral rotations in TbMnO3 from first principles

    Full text link
    The electronic contribution to the magnetically induced polarization in orthorhombic TbMnO3 is studied from first principles. We compare the cases in which the spin cycloid, which induces the electric polarization via the spin-orbit interaction, is in either the b-c or a-b plane. We find that the electronic contribution is negligible in the first case, but much larger, and comparable to the lattice-mediated contribution, in the second case. However, we how that this behavior is an artifact of the particular pattern of octahedral rotations characterizing the structurally relaxed Pbnm crystal structure. To do so, we explore how the electronic contribution varies for a structural model of rigidly rotated MnO6 octahedra, and demonstrate that it can vary over a wide range, comparable with the lattice-mediated contribution, for both b-c and a-b spirals. We introduce a phenomenological model that is capable of describing this behavior in terms of sums of symmetry-constrained contributions arising from the displacements of oxygen atoms from the centers of the Mn-Mn bonds.Comment: 8 pages, 5 figures, 3 table

    Spin-dependent Hedin's equations

    Full text link
    Hedin's equations for the electron self-energy and the vertex were originally derived for a many-electron system with Coulomb interaction. In recent years it has been increasingly recognized that spin interactions can play a major role in determining physical properties of systems such as nanoscale magnets or of interfaces and surfaces. We derive a generalized set of Hedin's equations for quantum many-body systems containing spin interactions, e.g. spin-orbit and spin-spin interactions. The corresponding spin-dependent GW approximation is constructed.Comment: 5 pages, 1 figur

    Improved Determination of the Width of the Top Quark

    Get PDF
    We present an improved determination of the total width of the top quark, Γt, using 5.4 fb-1 of integrated luminosity collected by the D0 Collaboration at the Tevatron pp- Collider. The total width Γt is extracted from the partial decay width Γ(t →Wb) and the branching fraction Β(t → Wb). Γ(t → Wb) is obtained from the t-channel single top-quark production cross section and Β(t → Wb) is measured in tt- events. For a top mass of 172.5 GeV, the resulting width is Γt = 2.00 +0:47 - 0:43 GeV. This translates to a top-quark lifetime of τt = (3.29 +0:90 -0.63) x 10-25s. We also extract an improved direct limit on the Cabibbo- Kobayashi-Maskawa quark-mixing matrix element 0.81 < │Vtb│ ≤ 1 at 95% C.L. and a limit of │Vtb ‘│< 0.59 for a high-mass fourth-generation bottom quark assuming unitarity of the fourth-generation quark-mixing matrix.We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China)

    Combination of CDF and D0 Measurements of the W boson Helicity in Top Quark Decays

    Get PDF
    We report the combination of recent measurements of the helicity of the W boson from top quark decay by the CDF and D0 collaborations, based on data samples corresponding to integrated luminosities of the 2.7-5.4 fb-1 of pp- collisions collected during Run II of the Fermilab Tevatron collider. Combining measurements that simultaneously determine the fractions of the W bosons with longitudinal (f0) and right-handed (f+) helicities, we find f0= 0.722 ± 0.081[±0.062(stat) ± 0.052(syst)] and f+ = -0.033 ± 0.046[±0.034(stat) ± 0.031(syst)]. Combining measurements where one of the helicity fractions is fixed to the value expected in the standard model, we find f0 = 0.682 ± 0.057[±0.035(stat) ± 0.046(syst)] for fixed f+ and f+ = -0.015 ± 0.035[±0.018(stat) ± 0.030(syst)] for fixed f0. The results are consistent with standard model expectations.We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); INFN (Italy); Ministry of Education, Culture, Sports, Science, and Technology (Japan); Colciencias (Colombia); CONACyT (Mexico); World Class University Program, National Research Foundation, NRF (Korea); CONICET and UBACyT (Argentina); Australian Research Council (Australia); FOM (The Netherlands); STFC and the Royal Society (United Kingdom); MSMT and GACR (Czech Republic); CRC Program and NSERC (Canada); Academy of Finland (Finland); BMBF and DFG (Germany); SFI (Ireland); Slovak R&D Agency (Slovakia); Programa Consolider-Ingenio 2010 (Spain); Swedish Research Council (Sweden); Swiss National Science Foundation (Switzerland); NSC (Republic of China); CAS and CNSF (China); and the A. P. Sloan Foundation (USA)

    Combination of the Top Quark Mass Measurements from the Tevatron Collider

    Get PDF
    The top quark is the heaviest known elementary particle, with a mass about 40 times larger than the mass of its isospin partner, the bottom quark. It decays almost 100% of the time to a W boson and a bottom quark. Using top-antitop pairs at the Tevatron proton-antiproton collider, the CDF and D0 Collaborations have measured the top quark’s mass in different final states for integrated luminosities of up to 5.8 fb-1. This paper reports on a combination of these measurements that results in a more precise value of the mass than any individual decay channel can provide. It describes the treatment of the systematic uncertainties and their correlations. The mass value determined is 173.18 ± 0.56(stat) ± 0.75(syst) GeV or 173.18 ± 0.94 GeV, which has a precision of ±0.54%, making this the most precise determination of the top-quark mass.We thank the Fermilab staff and technical staffs of the participating institutions for their vital contributions and acknowledge support from the DOE and NSF (USA), ARC (Australia), CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil), NSERC (Canada), NSC, CAS, and CNSF (China), Colciencias (Colombia), MSMT and GACR (Czech Republic), the Academy of Finland, CEA, and CNRS/IN2P3 (France), BMBF and DFG (Germany), DAE and DST (India), SFI (Ireland), INFN (Italy), MEXT (Japan), the Korean World Class University Program and NRF (Korea), CONACyT (Mexico), FOM (Netherlands), MON, NRC KI, and RFBR (Russia), the Slovak R&D Agency, the Ministerio de Ciencia e Innovacio´n, and Programa Consolider-Ingenio 2010 (Spain), The Swedish Research Council (Sweden), SNSF (Switzerland), STFC and the Royal Society (United Kingdom), and the A. P. Sloan Foundation (USA)
    • …
    corecore