20,825 research outputs found

    Center vortex model for the infrared sector of Yang-Mills theory

    Get PDF
    A model for the infrared sector of SU(2) Yang-Mills theory, based on magnetic vortices represented by (closed) random surfaces, is presented. The model quantitatively describes both confinement (including the finite-temperature transition to a deconfined phase) and the topological susceptibility of the Yang-Mills ensemble. A first (quenched) study of the spectrum of the Dirac operator furthermore yields a behavior for the chiral condensate which is compatible with results obtained in lattice gauge theory.Comment: Lattice2001(confinement) proceedings, 3 pages, 3 ps figure

    Center vortex model for the infrared sector of SU(3) Yang-Mills theory: Topological susceptibility

    Full text link
    The topological susceptibility of the SU(3) random vortex world-surface ensemble, an effective model of infrared Yang-Mills dynamics, is investigated. The model is implemented by composing vortex world-surfaces of elementary squares on a hypercubic lattice, supplemented by an appropriate specification of vortex color structure on the world-surfaces. Topological charge is generated in this picture by writhe and self-intersection of the vortex world-surfaces. Systematic uncertainties in the evaluation of the topological charge, engendered by the hypercubic construction, are discussed. Results for the topological susceptibility are reported as a function of temperature and compared to corresponding measurements in SU(3) lattice Yang-Mills theory. In the confined phase, the topological susceptibility of the random vortex world-surface ensemble appears quantitatively consistent with Yang-Mills theory. As the temperature is raised into the deconfined regime, the topological susceptibility falls off rapidly, but significantly less so than in SU(3) lattice Yang-Mills theory. Possible causes of this deviation, ranging from artefacts of the hypercubic description to more physical sources, such as the adopted vortex dynamics, are discussed.Comment: 30 pages, 6 figure

    Susceptibility of Monte-Carlo Generated Projected Vortices

    Get PDF
    We determine the topological susceptibility from center projected vortices and demonstrate that the topological properties of the SU(2) Yang-Mills vacuum can be extracted from the vortex content. We eliminate spurious ultraviolet fluctuations by two different smoothing procedures. The extracted susceptibility is comparable to that obtained from full field configurations.Comment: 3 pages, 4 figures; Lattice2001(confinement

    Center vortex model for the infrared sector of SU(4) Yang-Mills theory: String tensions and deconfinement transition

    Full text link
    A random vortex world-surface model for the infrared sector of SU(4) Yang-Mills theory is constructed, focusing on the confinement properties and the behavior at the deconfinement phase transition. Although the corresponding data from lattice Yang-Mills theory can be reproduced, the model requires a more complex action and considerably more tuning than the SU(2) and SU(3) cases studied previously. Its predictive capabilities are accordingly reduced. This behavior has a definite physical origin, which is elucidated in detail in the present work. As the number of colors is raised in Yang-Mills theory, the corresponding infrared effective vortex description cannot indefinitely continue to rely on dynamics determined purely by vortex world-surface characteristics; additional color structures present on the vortices begin to play a role. As evidenced by the modeling effort reported here, definite signatures of this behavior appear in the case of four colors.Comment: 24 pages, 7 figures containing 8 ps file
    • …
    corecore