2,220 research outputs found

    Quantization with Action-Angle Coherent States

    Full text link
    For a single degree of freedom confined mechanical system with given energy, we know that the motion is always periodic and action-angle variables are convenient choice as conjugate phase-space variables. We construct action-angle coherent states in view to provide a quantization scheme that yields precisely a given observed energy spectrum En{E_n} for such a system. This construction is based on a Bayesian approach: each family corresponds to a choice of probability distributions such that the classical energy averaged with respect to this probability distribution is precisely EnE_n up to a constant shift. The formalism is viewed as a natural extension of the Bohr-Sommerfeld rule and an alternative to the canonical quantization. In particular, it also yields a satisfactory angle operator as a bounded self-adjoint operator

    POVM Quantization

    Full text link
    We present a general formalism for giving a measure space paired with a separable Hilbert space a quantum version based on normalized positive operator-valued measure. The latter are built from families of density operators labelled by points of the measure space. We specially focus on various probabilistic aspects of these constructions. Simple or more elaborate examples illustrate the procedure: circle, 2-sphere, plane, half-plane. Links with POVM quantum measurement and quantum statistical inference are sketched

    Types for Location and Data Security in Cloud Environments

    Get PDF
    Cloud service providers are often trusted to be genuine, the damage caused by being discovered to be attacking their own customers outweighs any benefits such attacks could reap. On the other hand, it is expected that some cloud service users may be actively malicious. In such an open system, each location may run code which has been developed independently of other locations (and which may be secret). In this paper, we present a typed language which ensures that the access restrictions put on data on a particular device will be observed by all other devices running typed code. Untyped, compromised devices can still interact with typed devices without being able to violate the policies, except in the case when a policy directly places trust in untyped locations. Importantly, our type system does not need a middleware layer or all users to register with a preexisting PKI, and it allows for devices to dynamically create new identities. The confidentiality property guaranteed by the language is defined for any kind of intruder: we consider labeled bisimilarity i.e. an attacker cannot distinguish two scenarios that differ by the change of a protected value. This shows our main result that, for a device that runs well typed code and only places trust in other well typed devices, programming errors cannot cause a data leakage.Comment: Short version to appear in Computer Security Foundations Symposium (CSF'17), August 201

    Three paths toward the quantum angle operator

    Full text link
    We examine mathematical questions around angle (or phase) operator associated with a number operator through a short list of basic requirements. We implement three methods of construction of quantum angle. The first one is based on operator theory and parallels the definition of angle for the upper half-circle through its cosine and completed by a sign inversion. The two other methods are integral quantization generalizing in a certain sense the Berezin-Klauder approaches. One method pertains to Weyl-Heisenberg integral quantization of the plane viewed as the phase space of the motion on the line. It depends on a family of "weight" functions on the plane. The third method rests upon coherent state quantization of the cylinder viewed as the phase space of the motion on the circle. The construction of these coherent states depends on a family of probability distributions on the line.Comment: 20 page

    Quantum states of the bouncing universe

    Full text link
    In this paper we study quantum dynamics of the bouncing cosmological model. We focus on the model of the flat Friedman-Robertson-Walker universe with a free scalar field. The bouncing behavior, which replaces classical singularity, appears due to the modification of general relativity along the methods of loop quantum cosmology. We show that there exist a unitary transformation that enables to describe the system as a free particle with Hamiltonian equal to canonical momentum. We examine properties of the various quantum states of the Universe: boxcar state, standard coherent state, and soliton-like state, as well as Schr{\"o}dinger's cat states constructed from these states. Characteristics of the states such as quantum moments and Wigner functions are investigated. We show that each of these states have, for some range of parameters, a proper semiclassical limit fulfilling the correspondence principle. Decoherence of the superposition of two universes is described and possible interpretations in terms of triad orientation and Belinsky-Khalatnikov-Lifshitz conjecture are given. Some interesting features regarding the area of the negative part of the Wigner function have emerged.Comment: 18 pages, 19 figure

    Krein Spaces in de Sitter Quantum Theories

    Get PDF
    Experimental evidences and theoretical motivations lead to consider the curved space-time relativity based on the de Sitter group SO0(1,4)SO_0(1,4) or Sp(2,2)Sp(2,2) as an appealing substitute to the flat space-time Poincare relativity. Quantum elementary systems are then associated to unitary irreducible representations of that simple Lie group. At the lowest limit of the discrete series lies a remarkable family of scalar representations involving Krein structures and related undecomposable representation cohomology which deserves to be thoroughly studied in view of quantization of the corresponding carrier fields. The purpose of this note is to present the mathematical material needed to examine the problem and to indicate possible extensions of an exemplary case, namely the so-called de Sitterian massless minimally coupled field, i.e. a scalar field in de Sitter space-time which does not couple to the Ricci curvature
    corecore