1,029 research outputs found

    Abundance of Belugas, Delphinapterus leucas, in Cook Inlet, Alaska, 1994–2000

    Get PDF
    Annual abundance estimates of belugas, Delphinapterus leucas, in Cook Inlet were calculated from counts made by aerial observers and aerial video recordings. Whale group-size estimates were corrected for subsurface whales (availability bias) and whales that were at the surface but were missed (detection bias). Logistic regression was used to estimate the probability that entire groups were missed during the systematic surveys, and the results were used to calculate a correction to account for the whales in these missed groups (1.015, CV = 0.03 in 1994–98; 1.021, CV = 0.01 in 1999– 2000). Calculated abundances were 653 (CV = 0.43) in 1994, 491 (CV = 0.44) in 1995, 594 (CV = 0.28) in 1996, 440 (CV = 0.14) in 1997, 347 (CV = 0.29) in 1998, 367 (CV = 0.14) in 1999, and 435 (CV = 0.23, 95% CI=279–679) in 2000. For management purposes the current Nbest = 435 and Nmin = 360. These estimates replace preliminary estimates of 749 for 1994 and 357 for 1999. Monte Carlo simulations indicate a 47% probability that from June 1994 to June 1998 abundance of the Cook Inlet stock of belugas was depleted by 50%. The decline appears to have stopped in 1998

    Observations and Predictions of Arctic Climatic Change: Potential Effects on Marine Mammals

    Get PDF
    Recent analyses have revealed trends over the past 20-30 years of decreasing sea ice extent in the Arctic Ocean coincident with warming trends. Such trends may be indicative of the polar amplifications of warming predicted for the next several decades in response to increasing atmospheric CO2. We have summarized these predictions and nonuniform patterns of arctic climate change in order to address their potential effects on marine mammals. Since recent trends in sea ice extent are nonuniform, the direct and indirect effects on marine mammals are expected to vary geographically. Changes in the extent and concentration of sea ice may alter the seasonal distributions, geographic ranges, patterns of migration, nutritional status, reproductive success, and ultimately the abundance and stock structure of some species. Ice-associated seals, which rely on suitable ice substrate for resting, pupping, and molting, may be especially vulnerable to such changes. As recent decreases in ice coverage have been more extensive in the Siberian Arctic (60 E-180 E) than in the Beaufort Sea and western sectors, we speculate that marine mammal populations in the Siberian Arctic may be among the first to experience climate-induced geographic shifts or altered reproductive capacity due to persistent changes in ice extent. Alteration in the extent and productivity of ice-edge systems may affect the density and distribution of important ice-associated prey of marine mammals, such as arctic cod, Boreogadus saida, and sympagic ("with ice") amphipods. Present climate models, however, are insufficient to predict regional ice dynamics, winds, mesoscale features, and mechanisms of nutrient resupply, which must be known to predict productivity and trophic response. Therefore, it is critical that mesoscale process-oriented studies identify the biophysical coupling required to maintain suitable prey availability and ice-associated habitat for marine mammals on regional arctic scales. Only an integrated ecosystems approach can address the complexity of factors determining reproductivity and cascading trophic dynamics in a warmer Arctic. This approach, integrated with monitoring of key indicator species (e.g., bowhead whale, ringed seal, and beluga), should be a high priority.Des analyses récentes ont fait apparaître des tendances, au cours des 20 à 30 dernières années, à la diminution de l'étendue des glaces de mer dans l'océan Arctique qui coïncident avec des tendances au réchauffement. Ces tendances pourraient être symptomatiques de l'amplification polaire du réchauffement prédit pour les prochaines décennies suite à la hausse de CO2 dans l'atmosphère. Cet article offre un résumé de ces prédictions et des schémas non uniformes de changement climatique dans l'Arctique, en vue d'examiner leurs retombées potentielles sur les mammifères marins. Vu que les tendances récentes de l'étendue des glaces de mer ne sont pas uniformes, les retombées directes et indirectes sur les mammifères marins devraient varier sur le plan géographique. Des changements dans l'étendue et la concentration de la glace de mer peuvent modifier les distributions saisonnières, les aires géographiques, les schémas de migration, l'état nutritionnel, le succès de la reproduction, et, en fin de compte, l'abondance et la structure de la population de certaines espèces. Les phoques associés à la glace, qui dépendent d'un support glaciel pour le repos, la mise bas et la mue, seraient particulièrement affectés par de tels changements. Vu que les diminutions récentes de couverture de glace ont été plus importantes dans l'Arctique sibérien (de 60° E. à 180° E.) que dans la mer de Beaufort et les secteurs occidentaux, on pense que les populations de mammifères marins dans l'Arctique sibérien pourraient être les premières à faire l'expérience de variations géographiques dues au climat ou d'une modification de leur capacité de reproduction causée par des changements chroniques dans l'étendue de glace. Une modification de l'étendue et de la productivité des systèmes de la marge glaciaire pourrait affecter la densité et la distribution de proies associées à la glace importantes pour les mammifères marins, comme la morue arctique Boreogadus saida et les amphipodes vivant en contact avec la glace. Les modèles climatologiques actuels ne sont toutefois pas en mesure de prédire les dynamiques régionales de la glace, les vents, les caractéristiques à mésoéchelle ainsi que les mécanismes de réapprovisionnement en éléments nutritifs, tous éléments que l'on doit connaître pour pouvoir prédire la productivité et la réponse trophique. Il est par conséquent critique que des études à mésoéchelle axées sur les processus identifient les interactions du milieu naturel nécessaires pour maintenir, à des échelles arctiques régionales, une disponibilité de proies et un habitat associé à la glace appropriés aux mammifères marins. Seule une approche intégrée des écosystèmes peut envisager la complexité des facteurs déterminant la productivité et les dynamiques trophiques qui en résultent dans un Arctique plus tempéré. Cette approche, intégrée avec la surveillance d'espèces indicateurs clés (p. ex., la baleine boréale, le phoque annelé et le bélouga), devrait constituer une haute priorité

    Cetacean Habitat Selection in the Alaskan Arctic during Summer and Autumn

    Get PDF
    Ten years (1982-91) of sighting data from aerial surveys offshore of northern Alaska were analyzed to investigate seasonal variability in cetacean habitat selection. Distinct habitats were described for bowhead whales (Balaena mysticetus), white whales (Delphinapterus leucas), and gray whales (Eschrichtius robustus) on the basis of habitat selection ratios calculated for bathymetric and ice cover regimes. In summer, bowheads selected continental slope waters and moderate ice conditions; white whales selected slope and basin waters and moderate to heavy ice conditions; and gray whales selected coastal/shoal waters and open water. In autumn, bowheads selected inner shelf waters and light ice conditions; white whales selected outer shelf and slope waters and moderate to heavy ice; and gray whales selected coastal and shoal/trough habitats in light ice and open water. Habitat differences among species were significant in both seasons (ANOVA F > 28, p < 0.00001). Interseasonal depth and ice cover habitats were significantly different for bowhead whales (p < 0.00002), but not for gray whales (p > 0.35). White whale depth habitat was significantly different between seasons (p < 0.00002), but ice cover habitat was not (p < 0.08). Des données d'observation réalisées sur dix années (1982-1991) grâce à des relevés aériens au large de l'Alaska septentrional ont été analysées dans le cadre de recherches sur la variabilité saisonnière dans la sélection de l'habitat des cétacés. On a décrit des habitats distincts pour la baleine boréale (Balaena mysticetus), la baleine blanche (Delphinapterus leucas) et la baleine grise de Californie (Eschrichtius robustus) en se fondant sur les taux de sélection de l'habitat calculés pour le régime bathymétrique et celui de la couverture de glace. En été, la baleine boréale choisissait les eaux de la pente continentale et des conditions de glace modérée; la baleine blanche choisissait les eaux de la pente continentale et du bassin océanique, et des conditions de glace allant de modérée à épaisse; et la baleine grise choisissait des eaux côtières et de hauts-fonds ainsi que l'eau libre. En automne, la baleine boréale choisissait les eaux intérieures du plateau continental, où se trouvait une faible concentration de glace; la baleine blanche choisissait les eaux à l'extérieur du plateau et sur la pente, ainsi qu'une glace allant de modérée à épaisse; et la baleine grise choisissait des habitats côtiers et de hauts-fonds ou des fossés à faible concentration de glace et à eau libre. Les différences d'habitat entre les espèces étaient importantes durant les deux saisons (ANOVA F > 28, p < 0,00001). D'une saison à une autre, les habitats différaient sensiblement quant à la profondeur et à la couverture de glace pour la baleine boréale (p < 0,00002), mais pas pour la baleine grise (p > 0,35). La profondeur de l'habitat pour la baleine blanche variait sensiblement d'une saison à une autre (p <0,00002), mais pas la couverture de glace (p < 0,08).

    A particle introduction experiment in Santa Catalina Basin sediments: Testing the age-dependent mixing hypothesis

    Get PDF
    The occurrence of age-dependent mixing, a process by which recently deposited, food-rich particles undergo more intense bioturbation than older, food-poor particles, could dramatically alter patterns of organic-matter diagenesis in deep-sea sediments. To explicitly test for age-dependent mixing, an in-situ particle introduction experiment was conducted on the bathyal Santa Catalina Basin floor. Mixtures of radioisotope-tagged particles representing a food quality gradient were dispersed in small amounts on the seafloor and sampled over periods of 0 to 594 days. Introduced particle types were all similar in size and included fresh diatoms ( young particles), surface sediments ( intermediate-age particles), and particles from 30-cm deep in the sediment column ( old particles). This approach permitted evaluation of particle mixing intensity for several particle ages and provided an independent check on mixing coefficients determined from naturally occurring radioisotopes (234Thxs and 210Pbxs). All particles experienced rapid (\u3c6 h) transport into the upper 2 cm of the seabed resulting from passive deposition down burrows or extremely rapid bioturbation. Intense bioturbation on 4-d time scales included both biodiffusive and nondiffusive (bioadvective and nonlocal) transport. Bioturbation of tracers exhibited time (or age ) dependence in two ways: (1) Diffusive mixing intensity for all tracer types decreased with time (4-d Db = 293 cm2 y-1, Db at 520 d = 2.6 cm2 y-1), and (2) The nature of bioturbation changed over this period with more efficient bioadvection and nonlocal exchange giving way to slower diffusive mixing. Both changes are consistent with the age-dependent-mixing hypothesis. Biodiffusive mixing was not measurably selective, with no significant preference for a single particle type. In contrast, nondiffusive transport, likely caused by deposit-feeding cirratulid polychaetes, exhibited distinct particle selectivity, especially over 4-d time scales, with the diatom tracer transported most rapidly to depth. Degradation of the labile organic carbon in diatoms most likely led to decreasing selection of diatoms by deposit feeders until diatoms and old sediment particles experienced comparable mixing intensities

    Feeding selectivity and rapid particle processing by deep-sea megafaunal deposit feeders: A 234Th tracer approach

    Get PDF
    Deposit-feeding megafauna occur in virtually all deep-sea environments, yet their feeding selectivity and particle processing rates are poorly known. Excess 234Th activity is commonly used asa geochemical tracer for recently settled (, 100-d old) particles in the quiescent deep sea, but it has rarely been applied to the study of deposit feeders. To explore the selectivity and rates of megafaunal deposit feeding, we compared excess 234Th activities in the gut contents of deposit feeders from Santa Catalina Basin (SCB) (~ 1200 m depth) and the Hawaiian slope (~ 1680 m) to the activity of surface sediments and, in SCB, to material from sediment traps moored, 150 m above the seafloor. We also measured concentrations of chlorophylla and phaeopigments in animal guts and surface sediments to evaluate feeding selectivity. In the SCB, excess 234Th (234Thxs) activities in the guts of four species of surface-deposit feeders were 14–17 fold greater than those of the top 5 mm of sediment. Pannychiamoseleyi and Scotoplanes globosa, two highly mobile, surface-deposit-feeding elasipodid holothuri-ans, were the most enriched in gut 234Thxs activity, suggesting that these species fed very selectivelyon particles settled to the seafloor within the previous, 20 d. Pannychia moseleyi guts also exhibited 500-fold enrichment of chlorophyll a relative to surface sediments indicating highly selective ingestion of phytodetritus. Chiridota sp., a burrowing, surface-deposit-feeding, chiridotid holothurian, and Bathybembix bairdii, a surface-deposit-feeding trochid gastropod, were less enriched in gut 234Thxs activity, reflecting lower mobility and/or less selectivity at time of particle pickup. A subsurface-deposit-feeding, molpadiid holothurian was not enriched in gut 234Thxs activity compared to surface sediments, but was greatly enriched compared to average activities at its presumed feeding depth of 6–7 cm. On the Hawaiian slope, gut contents of two surface-deposit feeders, the synallactidholothurians Mesothuria carnosa and Paleopatides retifer, were not enriched in 234Thxs activity;however, M. carnosa and Phryssocystis sp. (a surface-deposit-feeding echinoid) were enriched in chlorophyll a, suggesting that the Hawaiian slope species are also selective feeders. Presumably, frequent sediment resuspension makes 234Thxs activity a poor tracer for recently settled, food-rich particles on the Hawaiian slope. Based on a newly developed 234Th-flux model, we calculate that the three dominant megafaunal, surface-deposit feeders in SCB consumed on average 39–52% (s.e.13–27%) of the daily flux of 234Thxs activity to the SCB floor. By chemically altering (e.g., digesting) and redistributing recently settled particulate organic matter, these megafauna are likely to substantially influence carbon diagenesis and food-web structure in this bathyal habitat

    Bioturbation and particle transport in Carolina slope sediments: A radiochemical approach

    Get PDF
    In situ tracer experiments investigated short-term sediment mixing processes at two Carolina continental margin sites (water depth = 850 m) characterized by different organic C fluxes, 234Th mixing coefficients (Db) and benthic assemblages. Phytoplankton, slope sediment, and sand-sized glass beads tagged with 210Pb, 113Sn, and 228Th, respectively, were placed via submersible at the sediment-water interface at both field sites (Site I off Cape Fear, and Site III off Cape Hatteras). Experimental plots were sampled at 0, 1.5 days, and 90 days after tracer emplacement to examine short-term, vertical transport. Both sites are initially dominated by nonlocal mixing. Transport to the bottom of the surface mixed layer at both sites occurs more rapidly than 234Th-based Db values predict; after 1.5 days, tagged particles were observed 5 cm below the sediment-water interface at Site I and 12 cm below at Site III. Impulse tracer profiles after 90 days at Site III exhibit primarily diffusive distributions, most likely due to a large number of random, nonlocal mixing events. The Db values determined from 90-day particle tagging experiments are comparable to those obtained from naturally occurring 234Th profiles (~100-day time scales) from nearby locations. The agreement between impulse tracer mixing coefficients and steady-state natural tracer mixing coefficients suggests that the diffusive analogue for bioturbation on monthly time scales is a realistic and useful approach. Tracer profiles from both sites exhibit some degree of particle selective mixing, but the preferential transport of the more labile carbon containing particles only occurred 30% of the time. Consequently, variations in the extent to which age-dependent mixing occurs in marine sediments may depend on factors such as faunal assemblage and organic carbon flux

    Rapid subduction of organic matter by maldanid polychaetes on the North Carolina slope

    Get PDF
    In situ tracer experiments conducted on the North Carolina continental slope reveal that tube-building worms (Polychaeta: Maldanidae) can, without ingestion, rapidly subduct freshly deposited, algal carbon (13C-labeled diatoms) and inorganic materials (slope sediment and glass beads) to depths of 10 cm or more in the sediment column. Transport over 1.5 days appears to be nonselective but spatially patchy, creating localized, deep hotspots. As a result of this transport, relatively fresh organic matter becomes available soon after deposition to deep-dwelling microbes and other infauna, and both aerobic and anaerobic processes may be enhanced. Comparison of tracer subduction with estimates from a diffusive mixing model using 234Th-based coefficients, suggests that maldanid subduction activities, within 1.5 d of particle deposition, could account for 25–100% of the mixing below 5 cm that occurs on 100-day time scales. Comparisons of community data from the North Carolina slope for different places and times indicate a correlation between the abundance of deep-dwelling maldanids and the abundance and the dwelling depth in the sediment column of other infauna. Pulsed inputs of organic matter occur frequently in margin environments and maldanid polychaetes are a common component of continental slope macrobenthos. Thus, the activities we observe are likely to be widespread and significant for chemical cycling (natural and anthropogenic materials) on the slope. We propose that species like maldanids, that rapidly redistribute labile organic matter within the seabed, probably function as keystone resource modifiers. They may exert a disproportionately strong influence (relative to their abundance) on the structure of infaunal communities and on the timing, location and nature of organic matter diagenesis and burial in continental margin sediments

    Evaluation of excess 234Th activity in sediments as an indicator of food quality for deep-sea deposit feeders

    Get PDF
    Deep-sea deposit feeders selectively ingest large volumes of sediment. Knowledge of the nature of this selectivity will help to elucidate the limiting nutritional requirements and geochemical impacts of these abundant animals. Shallow-water and theoretical studies suggest that deep-sea deposit feeders should select particles rich in protein, bacterial biomass, and/or chloropigment concentrations. Recent studies indicate that deep-sea megafaunal deposit feeders exhibit strong gut enrichment of excess (xs) 234Th activity, even though 234Thxs lacks nutritional value. To explore the significance of selective ingestion of 234Thxs activity, we evaluated the correlations between 234Thxs activity and three potential tracers of deposit feeder food quality: chlorophyll a (chl a), enzymatically hydrolyzable amino acids (EHAA), and adenosine triphosphate (ATP). Surface sediments from three quiescent bathyal basins off Southern California (San Nicolas, Santa Catalina, and San Clemente) were collected by a multiple corer and analyzed for 234Thxs activity, chl a, EHAA, ATP, and total organic carbon and nitrogen. 234Thxs activity was positively correlated with chl a and phaeopigment concentrations and negatively correlated with EHAA concentrations. Excess 234Th was not linearly correlated with concentrations of ATP, organic carbon, or total nitrogen. The results suggest that deep-sea deposit feeders select sediments with high 234Thxs activity because it is associated with recently settled phytodetrital material. There is no evidence that this 234Thxs-rich material has particularly high concentrations of labile amino acids or microbial biomass. Phytodetrital material may be an important source of some other limiting nutrient to deep-sea deposit feeders, e.g., polyunsaturated fatty acids, labile organic carbon and/or vitamins

    The ORF59 DNA polymerase processivity factor homologs of Old World primate RV2 rhadinoviruses are highly conserved nuclear antigens expressed in differentiated epithelium in infected macaques

    Get PDF
    Background ORF59 DNA polymerase processivity factor of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is required for efficient copying of the genome during virus replication. KSHV ORF59 is antigenic in the infected host and is used as a marker for virus activation and replication. Results We cloned, sequenced and expressed the genes encoding related ORF59 proteins from the RV1 rhadinovirus homologs of KSHV from chimpanzee (PtrRV1) and three species of macaques (RFHVMm, RFHVMn and RFHVMf), and have compared them with ORF59 proteins obtained from members of the more distantly-related RV2 rhadinovirus lineage infecting the same non-human primate species (PtrRV2, RRV, MneRV2, and MfaRV2, respectively). We found that ORF59 homologs of the RV1 and RV2 Old World primate rhadinoviruses are highly conserved with distinct phylogenetic clustering of the two rhadinovirus lineages. RV1 and RV2 ORF59 C-terminal domains exhibit a strong lineage-specific conservation. Rabbit antiserum was developed against a C-terminal polypeptide that is highly conserved between the macaque RV2 ORF59 sequences. This anti-serum showed strong reactivity towards ORF59 encoded by the macaque RV2 rhadinoviruses, RRV (rhesus) and MneRV2 (pig-tail), with no cross reaction to human or macaque RV1 ORF59 proteins. Using this antiserum and RT-qPCR, we determined that RRV ORF59 is expressed early after permissive infection of both rhesus primary fetal fibroblasts and African green monkey kidney epithelial cells (Vero) in vitro. RRV- and MneRV2-infected foci showed strong nuclear expression of ORF59 that correlated with production of infectious progeny virus. Immunohistochemical studies of an MneRV2-infected macaque revealed strong nuclear expression of ORF59 in infected cells within the differentiating layer of epidermis corroborating previous observations that differentiated epithelial cells are permissive for replication of KSHV-like rhadinoviruses Conclusion The ORF59 DNA polymerase processivity factor homologs of the Old World primate RV1 and RV2 rhadinovirus lineages are phylogenetically distinct yet demonstrate similar expression and localization characteristics that correlate with their use as lineage-specific markers for permissive infection and virus replication. These studies will aid in the characterization of virus activation from latency to the replicative state, an important step for understanding the biology and transmission of rhadinoviruses, such as KSHV
    • …
    corecore