1,156 research outputs found

    The effect of sterilization on biological, organic geochemical and morphological information in natural samples

    Get PDF
    The loss of biological, organic geochemical, and morphological science information that may occur should a Mars surface sample be sterilized prior to return to earth is examined. Results of experimental studies are summarized

    Reassessment of the Rates at which Oil from Natural Sources Enters the Marine Environment

    Get PDF
    Previous estimates of the world-wide input of oil to the marine environment by natural seeps ranged from 0 ·2 to 6 ·0 million (metric) tonnes per year with a \u27best estimate\u27 of 0 ·6 million tonnes per year. Based on considerations of the availability of oil for seepage from the world\u27s known and assumed oil resources, we believe that the world-wide natural oil seepage over geological time should be revised to about 0 ·2 million tonnes per ),ear with a range upward or downward of a factor of ten leading to estimates between 0 ·02 and 2 million tonnes per year. Our estimate of the amount of oil eroding from the land and being transported to the oceans is about 0 ·05 million tonnes per year with an order of magnitude uncertainty. Therefore, while the uncertainties are large, we estimate that the total amount of oil entering the marine environment by natural, geological processes, is about 0 ·25 million tonnes per year, and the estimate may range from about 0 ·025 to 2 ·5 million tonnes per year

    Gas Phase Train in Upstream Oil & Gas Fields: PART-I Model Development

    Get PDF
    The prime contribution of this paper is to provide a large scale system (LSS) model for the gas phase operation in upstream oil and gas plants. The process model consists of the three main gas conditioning processes which exist in most upstream oil and gas processing plants; these are gas sweetening, gas dehydration, and hydrocarbon dew-pointing. The function of such a model is to provide a realistic process representation to test and verify different process control approaches, specifically those which deal with highly interactive control loops

    Non-Fickian Diffusion Affects the Relation between the Salinity and Hydrate Capacity Profiles in Marine Sediments

    Get PDF
    On-site measurements of water salinity (which can be directly evaluated from the electrical conductivity) in deep-sea sediments is technically the primary source of indirect information on the capacity of the marine deposits of methane hydrates. We show the relation between the salinity (chlorinity) profile and the hydrate volume in pores to be significantly affected by non-Fickian contributions to the diffusion flux---the thermal diffusion and the gravitational segregation---which have been previously ignored in the literature on the subject and the analysis of surveys data. We provide amended relations and utilize them for an analysis of field measurements for a real hydrate deposit.Comment: 7 pages, 2 figures, 1 table, submitted to Compte Rendus Mecaniqu

    Potential effects of gas hydrate on human welfare

    Full text link

    Selective Adsorption and Chiral Amplification of Amino Acids in Vermiculite Clay -Implications for the origin of biochirality

    Full text link
    Smectite clays are hydrated layer silicates that, like micas, occur naturally in abundance. Importantly, they have readily modifiable interlayer spaces that provide excellent sites for nanochemistry. Vermiculite is one such smectite clay and in the presence of small chain-length alkyl-NH3Cl ions, forms sensitive, 1-D ordered model clay systems with expandable nano-pore inter-layer regions. These inter-layers readily adsorb organic molecules. N-propyl NH3Cl vermiculite clay gels were used to determine the adsorption of alanine, lysine and histidine by chiral HPLC. The results show that during reaction with fresh vermiculite interlayers, significant chiral enrichment of either L- and D-enantiomers occurs depending on the amino acid. Chiral enrichment of the supernatant solutions is up to about 1% per pass. In contrast, addition to clay interlayers already reacted with amino acid solutions resulted in little or no change in D/L ratio during the time of the experiment. Adsorption of small amounts of amphiphilic organic molecules in clay inter-layers is known to produce Layer-by-Layer or Langmuir-Blodgett films. Moreover atomistic simulations show that self-organization of organic species in clay interlayers is important. These non-centrosymmetric, chirally active nanofilms may cause clays to act subsequently as chiral amplifiers, concentrating organic material from dilute solution and having different adsorption energetics for D- and L-enantiomers. The additional role of clays in RNA oligimerization already postulated by Ferris and others, together with the need for the organization of amphiphilic molecules and lipids noted by Szostak and others, suggests that such chiral separation by clays in lagoonal environments at normal biological temperatures might also have played a significant role in the origin of biochirality.Comment: 17 Pages, 2 Figures, 4 Table

    2-Amino-5-methyl­pyridinium 2-hy­droxy­benzoate

    Get PDF
    In the title compound, C6H9N2 +·C7H5O3 −, the protonated 2-amino-5-methyl­pyridinium cation and the 2-hy­droxy­benzoate anion are both essentially planar, with maximum deviations of 0.026 (2) and 0.034 (1) Å, respectively. The anion is stabilized by an intra­molecular O—H⋯O hydrogen bond, which forms an S(6) ring motif. In the solid state, the anions are linked to the cations via pairs of inter­molecular N—H⋯O hydrogen bonds forming R 2 2(8) ring motifs. The crystal structure is further stabilized by N—H⋯O and C—H⋯O inter­actions which link the mol­ecules into chains along [010]. A π–π stacking inter­action [centroid–centroid-distance = 3.740 (2) Å] is also observed

    Prebiotic Organic Microstructures

    Get PDF
    Micro- and sub-micrometer spheres, tubules and fiber-filament soft structures have been synthesized in our experiments conducted with 3 MeV proton irradiations of a mixture of simple inorganic constituents, CO, N2 and H2O. We analysed the irradiation products, with scanning electron microscopy (SEM) and atomic force microscopy (AFM). These laboratory organic structures produced wide variety of proteinous and non-proteinous amino acids after HCl hydrolysis. The enantiomer analysis for D-, L- alanine confirmed that the amino acids were abiotically synthesized during the laboratory experiment. Considering hydrothermal activity, the presence of CO2 and H2, of a ferromagnesian silicate mineral environment, of an Earth magnetic field which was much less intense during Archean times than nowadays and consequently of a proton excitation source which was much more abundant, we propose that our laboratory organic microstructures might be synthesized during Archean times. We show similarities in morphology and in formation with some terrestrial Archean microstructures and we suggest that some of the observed Archean carbon spherical and filamentous microstructures might be composed of abiogenic organic molecules. We further propose a search for such prebiotic organic signatures on Mars. This article has been posted on Nature precedings on 21 July 2010 [1]. Extinct radionuclides as source of excitation have been replaced by cosmic radiations which were much more intense 3.5 Ga ago because of a much less intense Earth magnetic field. The new version of the article has been presented at the ORIGINS conference in Montpellier in july 2011 [2] and has since been published in Origins of Life and Evolution of Biospheres 42 (4) 307-316, 2012. 
DOI: 10.1007/s11084-012-9290-5 

&#xa
    corecore