638 research outputs found

    Chemical diffusivity of boron in melts of haplogranitic composition

    Get PDF
    Chemical diffusivities of B in synthetic melts of haplogranitic composition have been measured by the diffusion couple technique at 1 atm between 1200–1600°C. The compositional profiles were measured by ion microprobe and modelled using the Boltzmann-Matano formalism to retrieve compositionally dependent interdiffusion coefficients. At the experimental conditions, B2O3 is found to exchange primarily with SiO2 and the interdiffusion coefficient increases with increasing replacement of Si by B in the melt. No isotopic fractionation of boron was observed in the diffusion zone at the experimental conditions. The compositional dependence of diffusivity increases with decreasing temperature. The activation energy of diffusion (~70 kcal) is similar to that for viscous flow in melts of the same composition and is relatively insensitive to B content between 1–10 wt% B2O3 in the melt. However, the addition of the initial 1 wt% B2O3 to a haplogranitic melt appears to dramatically lower the activation energy for these processes from ~ 100 kCal to ~70 kCal. Thus, common geochemical concentrations of B may affect petrogenesis of granitic rocks by their influence on these transport properties. Some implications of these results for crystal growth and dissolution in B-bearing melts and boron isotopic variation of granitic melts have been discussed. If diffusion is the rate-limiting process, boron isotopic heterogeneity may be maintained in granitic melts at magmatic temperatures on time scales of millions of years on a millimeter scale. The influence of small amounts of B on transport properties may also contribute toward resolution of an enigma regarding emplacement mechanisms of peraluminous granites

    Chemical diffusivity of boron in melts of haplogranitic composition

    Get PDF
    Chemical diffusivities of B in synthetic melts of haplogranitic composition have been measured by the diffusion couple technique at 1 atm between 1200–1600°C. The compositional profiles were measured by ion microprobe and modelled using the Boltzmann-Matano formalism to retrieve compositionally dependent interdiffusion coefficients. At the experimental conditions, B2O3 is found to exchange primarily with SiO2 and the interdiffusion coefficient increases with increasing replacement of Si by B in the melt. No isotopic fractionation of boron was observed in the diffusion zone at the experimental conditions. The compositional dependence of diffusivity increases with decreasing temperature. The activation energy of diffusion (~70 kcal) is similar to that for viscous flow in melts of the same composition and is relatively insensitive to B content between 1–10 wt% B2O3 in the melt. However, the addition of the initial 1 wt% B2O3 to a haplogranitic melt appears to dramatically lower the activation energy for these processes from ~ 100 kCal to ~70 kCal. Thus, common geochemical concentrations of B may affect petrogenesis of granitic rocks by their influence on these transport properties. Some implications of these results for crystal growth and dissolution in B-bearing melts and boron isotopic variation of granitic melts have been discussed. If diffusion is the rate-limiting process, boron isotopic heterogeneity may be maintained in granitic melts at magmatic temperatures on time scales of millions of years on a millimeter scale. The influence of small amounts of B on transport properties may also contribute toward resolution of an enigma regarding emplacement mechanisms of peraluminous granites

    Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition

    Get PDF
    International audienceDust grains of organic matter were the main reservoir of C and N in the forming Solar System and are thus considered to be an essential ingredient for the emergence of life. However, the physical environment and the chemical mechanisms at the origin of these organic grains are still highly debated. In this study, we report high-precision triple oxygen isotope composition for insoluble organic matter isolated from three emblematic carbonaceous chondrites, Orgueil, Murchison, and Cold Bokkeveld. These results suggest that the O isotope composition of carbonaceous chondrite insoluble organic matter falls on a slope 1 correlation line in the triple oxygen isotope diagram. The lack of detectable mass-dependent O isotopic fractionation, indicated by the slope 1 line, suggests that the bulk of carbonaceous chondrite organics did not form on asteroi-dal parent bodies during low-temperature hydrothermal events. On the other hand, these O isotope data, together with the H and N isotope characteristics of insoluble organic matter, may indicate that parent bodies of different carbonaceous chondrite types largely accreted organics formed locally in the protosolar nebula, possibly by photochemical dissociation of C-rich precursors

    The production of short-lived radionuclides by new non-rotating and rotating Wolf-Rayet model stars

    Full text link
    It has been speculated that WR winds may have contaminated the forming solar system, in particular with short-lived radionuclides (half-lives in the approximate 10^5 - 10^8 y range) that are responsible for a class of isotopic anomalies found in some meteoritic materials. We revisit the capability of the WR winds to eject these radionuclides using new models of single non-exploding WR stars with metallicity Z = 0.02. The earlier predictions for non-rotating WR stars are updated, and models for rotating such stars are used for the first time in this context. We find that (1) rotation has no significant influence on the short-lived radionuclide production by neutron capture during the core He-burning phase, and (2) 26Al, 36Cl, 41Ca, and 107Pd can be wind-ejected by a variety of WR stars at relative levels that are compatible with the meteoritic analyses for a period of free decay of around 10^5 y between production and incorporation into the forming solar system solid bodies. We confirm the previously published conclusions that the winds of WR stars have a radionuclide composition that can meet the necessary condition for them to be a possible contaminating agent of the forming solar system. Still, it remains to be demonstrated from detailed models that this is a sufficient condition for these winds to have provided a level of pollution that is compatible with the observations.Comment: 8 pages, 8 figure

    Dental Abnormalities and Early Diagnosis of Hyperphosphatasemia

    Get PDF
    Dental hard tissue abnormalities have never been described as part of the symptoms associated with hyperphosphatasemia. Fourteen teeth obtained from a young man, who had a mild form of hyperphosphatasemia, were analyzed using scanning electron microscopy (SEM), secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), and infrared (IR) spectroscopy. SEM revealed a thin enamel, presenting a prismatic structure with many pits, and atypical cementum and dentin showing numerous resorption areas. The X-ray diffractograms revealed poorly crystallinehydroxyapatite associated with α-tricalcium phosphate and magnesium hydroxide phases. SIMS data showed high Ca concentrations: 40.5 weight % {wt%; standard deviation (SD) = 0.13) and 42.5 wt% (SD = 1.03) in enamel and dentin respectively, and high Ca/P weight ratios: 2.28 in the enamel, 2.65 in the dentin. The lack of crystallinity may be linked to the high content of proteins and magnesium adsorbed onto apatite. This study demonstrates the need for thorough radiographical and biological investigations for skeletal abnormalities, even in the absence of systemic symptoms, when generalized dental abnormalities of both enamel and dentin are observed

    A low ÎŽ7Li lower crustal component: Evidence from an alkalic intraplate volcanic series (ChaĂźne des Puys, French Massif Central)

    No full text
    International audienceThe intraplate volcanic suite of the Chaüne des Puys (French Massif Central) shows a complete petrologic range, from alkali basalts to trachytes. The significant variations of trace elements and radiogenic isotopes along the series strongly support the occurrence of crustal assimilation associated with fractional crystallization (AFC). The least contaminated basalts are clearly related to a HIMU-type reservoir (206Pb/204Pb > 19.6; 87Sr/86Sr + 4). The behavior of radiogenic isotopes suggests that the most likely crustal contaminants are meta-sediments located in the lower crust. The Li isotopic compositions of the lavas range from high ή7Li (> + 7‰) in basalts to lighter values in more evolved lavas (down to ή7Li ≈ 0‰). The mantle component, expressed in the least evolved lavas, has a heavy Li isotopic signature, in good agreement with previous ή7Li measurements of OIB lavas with HIMU affinities. The evolution of Li isotopic compositions throughout the volcanic series is in agreement with the AFC model suggested by the Sr–Nd–Pb isotopic systems. Although the behavior of Li isotopes during assimilation processes is currently poorly constrained, our calculations suggest that at least a portion of the lower crust beneath the Chaüne des Puys is characterized by a light Li isotopic composition (ή7Li < − 5‰)

    Planetesimal formation in an evolving protoplanetary disk with a dead zone

    Get PDF
    Context. When and where planetesimals form in a protoplanetary disk are highly debated questions. Streaming instability is considered the most promising mechanism, but the conditions for its onset are stringent. Disk studies show that the planet forming region is not turbulent because of the lack of ionization forming possibly dead zones (DZs). Aims. We investigate planetesimal formation in an evolving disk, including the DZ and thermal evolution. Methods. We used a 1D time-evolving stratified disk model with composite chemistry grains, gas and dust transport, and dust growth. Results. Accretion of planetesimals always develops in the DZ around the snow line, due to a combination of water recondensation and creation of dust traps caused by viscosity variations close to the DZ. The width of the planetesimal forming region depends on the disk metallicity. For Z = Z⊙, planetesimals form in a ring of about 1 au width, while for Z > 1.2 Z⊙ planetesimals form from the snow line up to the outer edge of the DZ ≃ 20 au. The efficiency of planetesimal formation in a disk with a DZ is due to the very low effective turbulence in the DZ and to the efficient piling up of material coming from farther away; this material accumulates in region of positive pressure gradients forming a dust trap due to viscosity variations. For Z = Z⊙ the disk is always dominated in terms of mass by pebbles, while for Z > 1.2 Z⊙ planetesimals are always more abundant than pebbles. If it is assumed that silicate dust is sticky and grows up to impact velocities ~10 m s−1, then planetesimals can form down to 0.1 au (close to the inner edge of the DZ). In conclusion the DZ seems to be a sweet spot for the formation of planetesimals: wide scale planetesimal formation is possible for Z > 1.2 Z⊙. If hot silicate dust is as sticky as ice, then it is also possible to form planetesimals well inside the snow line

    Metal-silicate silicon isotopic fractionation and the composition of the bulk Earth

    Get PDF
    F. M. acknowledges funding from the European Research Council under the H2020 framework program/ERC grant agreement (#637503-Pristine).PostprintPeer reviewe
    • 

    corecore