920 research outputs found

    Missing Power vs low-l Alignments in the Cosmic Microwave Background: No Correlation in the Standard Cosmological Model

    Full text link
    On large angular scales (greater than about 60 degrees), the two-point angular correlation function of the temperature of the cosmic microwave background (CMB), as measured (outside of the plane of the Galaxy) by the Wilkinson Microwave Anisotropy Probe, shows significantly lower large-angle correlations than expected from the standard inflationary cosmological model. Furthermore, when derived from the full CMB sky, the two lowest cosmologically interesting multipoles, the quadrupole (l=2) and the octopole (l=3), are unexpectedly aligned with each other. Using randomly generated full-sky and cut-sky maps, we investigate whether these anomalies are correlated at a statistically significant level. We conclusively demonstrate that, assuming Gaussian random and statistically isotropic CMB anisotropies, there is no statistically significant correlation between the missing power on large angular scales in the CMB and the alignment of the l=2 and l=3 multipoles. The chance to measure the sky with both such a lack of large-angle correlation and such an alignment of the low multipoles is thus quantified to be below 10^{-6}.Comment: 4 Pages, 1 Figur

    Quasars and galaxy formation

    Get PDF
    Quasars are widely believed to be powered by accretion onto supermassive black holes and there is now considerable evidence for a link between mergers, quasars and the formation of spheroids. Cattaneo, Haehnelt & Rees (1999) have demonstrated that a very simple model in which supermassive black holes form and accrete most of their mass in mergers of galaxies of comparable masses can reproduce the observed relation of black hole mass to bulge luminosity. Here we show that this simple model can account for the luminosity function of quasars and for the redshift evolution of the quasar population provided a few additional assumptions are made. We use the extended Press-Schechter formalism to simulate the formation of galaxies in hierarchical models of the formation of structures and we assume that, when two galaxies of comparable masses merge, their central black holes coalesce and a fraction of the gas in the merger remnant is accreted by the supermassive black hole over a time-scale of about 10^7 yr. We find that the decrease in the merging rate with cosmic time and the depletion in the amount of cold gas available due to the formation of stars are not sufficient to explain the strong decline in the space density of bright quasars between z=2 and z=0, since larger and larger structures form, which can potentially host brighter and brighter quasars. To explain the redshift evolution of the space density of bright quasars between z=2 and z=0 we need to assume that there is a dependence on redshift either in the fraction of available gas accreted or in the time-scale for accretion.Comment: 8 pages, 8 figures, submitted to MNRA

    Shape of Cosmic String Loops

    Full text link
    Complicated cosmic string loops will fragment until they reach simple, non-intersecting ("stable") configurations. Through extensive numerical study we characterize these attractor loop shapes including their length, velocity, kink, and cusp distributions. We find that an initial loop containing M harmonic modes will, on average, split into 3M stable loops. These stable loops are approximately described by the degenerate kinky loop, which is planar and rectangular, independently of the number of modes on the initial loop. This is confirmed by an analytic construction of a stable family of perturbed degenerate kinky loops. The average stable loop is also found to have a 40% chance of containing a cusp. We examine the properties of stable loops of different lengths and find only slight variation. Finally we develop a new analytic scheme to explicitly solve the string constraint equations.Comment: 11 pages, 19 figures. See http://www.phys.cwru.edu/projects/strings/ for more information, movies, code, etc. Minor clarification suggested by referee. Accepted for publication in Phys. Rev.

    Can one reconstruct masked CMB sky?

    Full text link
    The CMB maps obtained by observations always possess domains which have to be masked due to severe uncertainties with respect to the genuine CMB signal. Cosmological analyses ideally use full CMB maps in order to get e.g. the angular power spectrum. There are attempts to reconstruct the masked regions at least at low resolutions, i.e. at large angular scales, before a further analysis follows. In this paper, the quality of the reconstruction is investigated for the ILC (7yr) map as well as for 1000 CMB simulations of the LambdaCDM concordance model. The latter allows an error estimation for the reconstruction algorithm which reveals some drawbacks. The analysis points to errors of the order of a significant fraction of the mean temperature fluctuation of the CMB. The temperature 2-point correlation function C(theta) is evaluated for different reconstructed sky maps which leads to the conclusion that it is safest to compute it on the cut-sky

    New constraints on Parity Symmetry from a re-analysis of the WMAP-7 low resolution power spectra

    Full text link
    The Parity symmetry of the Cosmic Microwave Background (CMB) pattern as seen by WMAP 7 is tested jointly in temperature and polarization at large angular scale. A Quadratic Maximum Likelihood (QML) estimator is applied to the WMAP 7 year low resolution maps to compute all polarized CMB angular power spectra. The analysis is supported by 10000 realistic Monte-Carlo realizations. We confirm the previously reported Parity anomaly for TT in the range δℓ=[2,22]\delta \ell=[2,22] at >99.5> 99.5% C.L.. No anomalies have been detected in TT for a wider ℓ\ell range (up to ℓmax=40\ell_{max}=40). No violations have been found for EE, TE and BB which we test here for the first time. The cross-spectra TB and EB are found to be consistent with zero. We also forecast {\sc Planck} capabilities in probing Parity violations on low resolution maps.Comment: 8 pages, 6 figures, 4 tables. Accepted for publication in MNRA

    Low-frequency line temperatures of the CMB

    Full text link
    Based on SU(2) Yang-Mills thermodynamics we interprete Aracde2's and the results of earlier radio-surveys on low-frequency CMB line temperatures as a phase-boundary effect. We explain the excess at low frequencies by evanescent, nonthermal photon fields of the CMB whose intensity is nulled by that of Planck distributed calibrator photons. The CMB baseline temperature thus is identified with the critical temperature of the deconfining-preconfining transition.Comment: v2: 9 pages, 1 figure, extended discussion of why prsent photon mass bounds are not in contradiction to a low-temperature, low-frequency Meissner mass responsible for UEGE, matches journal versio

    Large Scale Baryon Isocurvature Inhomogeneities

    Get PDF
    Big bang nucleosynthesis constraints on baryon isocurvature perturbations are determined. A simple model ignoring the effects of the scale of the perturbations is first reviewed. This model is then extended to test the claim that large amplitude perturbations will collapse, forming compact objects and preventing their baryons from contributing to the observed baryon density. It is found that baryon isocurvature perturbations are constrained to provide only a slight increase in the density of baryons in the universe over the standard homogeneous model. In particular it is found that models which rely on power laws and the random phase approximation for the power spectrum are incompatible with big bang nucleosynthesis unless an {\em ad hoc}, small scale cutoff is included.Comment: 11pages + 8figures, LaTeX (2.09), postscript figures available via anonymous ftp from oddjob.uchicago.edu:/ftp/ibbn/fig?.ps where ?=1-8 or via email from [email protected], Fermilab-Pub-94/???-A and UMN-TH-1307/9
    • …
    corecore