469 research outputs found

    Canopy interception, stemflow and streamflow on a small drainage in the Missouri Ozarks

    Get PDF
    Digitized 2007 AES MoU.Includes bibliographical references (page 26)

    Atmospheric deposition of organic carbon via precipitation

    Get PDF
    AbstractAtmospheric deposition is the major pathway for removal of organic carbon (OC) from the atmosphere, affecting both atmospheric and landscape processes. Transfers of OC from the atmosphere to land occur as wet deposition (via precipitation) and as dry deposition (via surface settling of particles and gases). Despite current understanding of the significance of organic carbon inputs with precipitation to carbon budgets, transfers of organic matter between the atmosphere and land are not explicitly included in most carbon cycle models due to limited data, highlighting the need for further information. Studies regarding the abundance of OC in precipitation are relatively sparse, in part due to the fact that concentrations of organics in precipitation and their associated rates of atmospheric deposition are not routinely measured as a part of major deposition monitoring networks. Here, we provide a new data synthesis from 83 contemporary studies published in the peer reviewed literature where organic matter in precipitation was measured around the world. We compiled data regarding the concentrations of organic carbon in precipitation and associated rates of atmospheric deposition of organic carbon. We calculated summary statistics in a common set of units, providing insights into the magnitude and regional variability of OC in precipitation. A land to ocean gradient is evident in OC concentrations, with marine sites generally showing lower values than continental sites. Our synthesis highlights gaps in the data and challenges for data intercomparison. There is a need to concentrate sampling efforts in areas where anthropogenic OC emissions are on the rise (Asia, South America), as well as in remote sites suggesting background conditions, especially in Southern Hemisphere. It is also important to acquire more data for marine rainwater at various distances from the coast in order to assess a magnitude of carbon transfer between the land and the ocean. Our integration of the recent published information on OC in precipitation provides a unique data set (shared here as supplemental information) and a regional perspective that will be useful in carbon budgets, environmental modeling, and ecosystem studies. This can be used for comparison with past conditions and as a baseline toward exploring future changes, since changes in emissions, land use, and climatic variability are reflected in the amount and quality of OC deposited to ecosystems

    Photodynamic therapy for actinic keratosis: Is the European consensus protocol for daylight PDT superior to conventional protocol for Aktilite CL 128 PDT?

    Get PDF
    International audienceBackground: Topical photodynamic therapy (PDT) is an established treatment modality for various dermato-oncologic conditions. In Europe, initially requiring irradiation with red light, PDT of actinic keratosis (AK) can now also be carried out with exposure to daylight that has been clinically proven to be as effective as and less painful than red light. Objectives: In this paper, we propose a comparison between the conventional protocol for Aktilite CL 128 (red light source) PDT and the European consensus protocol for daylight PDT — with the exposure is assumed to be performed during either a clear sunny day or an overcast day — in the treatment of AK with methyl aminolevulinate through a mathematical modeling. Method: This already published modeling that is based on an iterative procedure alternating determination of the local fluence rate and updating of the local optical properties enables to estimate the local damage induced by the therapy. Results: The European consensus protocol for daylight PDT during a sunny day and an overcast day provides, on average, 6.50 and 1.79 times higher PDT local damages at the end 2 of the treatment than those obtained using the conventional protocol for Aktilite CL 128 PDT, respectively. Conclusions: Results analysis shows that, even performed during an overcast day, the European consensus protocol for daylight PDT leads to higher PDT local damages than the efficient conventional protocol for Aktilite CL 128

    Soil Chemical Response to Experimental Acidification Treatments

    Get PDF
    One of the conclusions reached during the Congressionally mandated National Acid Precipitation Program (NAPAP) was that, compared to ozone and other stress factors, the direct effects of acidic deposition on forest health and productivity were likely to be relatively minor. However, the report also concluded “the possibility of long-term (several decades) adverse effects on some soils appears realistic” (Barnard et al. 1990). Possible mechanisms for these long-term effects include: (1) accelerated leaching of base cations from soils and foliage, (2) increased mobilization of aluminum (Al) and other metals such as manganese (Mn), (3) inhibition of soil biological processes, including organic matter decomposition, and (4) increased bioavailability of nitrogen (N)

    Vegetation and Acidification

    Get PDF
    In this chapter, the impact of watershed acidification treatments on WS3 at the Fernow Experimental Forest (FEF) and at WS9 on vegetation is presented and summarized in a comprehensive way for the first time. WS7 is used as a vegetative reference basin for WS3, while untreated plots within WS9 are used as a vegetative reference for WS9. Bioindicators of acidification impacts that will be considered include several measures of tree and stand growth rates, foliar chemistry, bolewood chemistry, and herbaceous species composition and diversity. These studies enhance our understanding of the inter-relationships of changes in soil conditions caused by the acidification treatment and the condition of forest vegetation

    Heat management strategies for MSW landfills

    Get PDF
    Heat is a primary byproduct of landfilling of municipal solid waste. Long-term elevated temperatures have been reported for MSW landfills under different operational conditions and climatic regions around the world. A conceptual framework is presented for management of the heat generated in MSW landfills. Three main strategies are outlined: extraction, regulation, and supplementation. Heat extraction allows for beneficial use of the excess landfill heat as an alternative energy source. Two approaches are provided for the extraction strategy: extracting all of the excess heat above baseline equilibrium conditions in a landfill and extracting only a part of the excess heat above equilibrium conditions to obtain target optimum waste temperatures for maximum gas generation. Heat regulation allows for controlling the waste temperatures to achieve uniform distribution at target levels at a landfill facility. Two approaches are provided for the regulation strategy: redistributing the excess heat across a landfill to obtain uniform target optimum waste temperatures for maximum gas generation and redistributing the excess heat across a landfill to obtain specific target temperatures. Heat supplementation allows for controlling heat generation using external thermal energy sources to achieve target waste temperatures. Two approaches are provided for the supplementation strategy: adding heat to the waste mass using an external energy source to increase waste temperatures and cooling the waste mass using an external energy source to decrease waste temperatures. For all strategies, available landfill heat energy is determined based on the difference between the waste temperatures and the target temperatures. Example analyses using data from landfill facilities with relatively low and high heat generation indicated thermal energy in the range of −48.4 to 72.4 MJ/m3 available for heat management. Further modeling and experimental analyses are needed to verify the effectiveness and feasibility of design, installation, and operation of heat management systems in MSW landfills

    Nebraska Agricultural Water Management Demonstration Network (NAWMDN): Integrating Research and Extension/Outreach

    Get PDF
    Maximizing the net benefits of irrigated plant production through appropriately designed agricultural water management programs is of growing importance in Nebraska, and other western and Midwestern states, because many areas are involved in management and policy changes to conserve irrigation water. In Nebraska, farmers are being challenged to practice conservation methods and use water resources more efficiently while meeting plant water requirements and maintaining high yields. Another challenge Nebraska experiences in it\u27s approximately 3.5‐million‐ha irrigated lands is limited adoption of newer technologies/tools to help farmers better manage irrigation, conserve water and energy, and increase plant water use efficiency. In 2005, the Nebraska Agricultural Water Management Demonstration Network (NAWMDN or Network) was formed from an interdisciplinary team of partners including the Natural Resources Districts (NRD); USDA‐NRCS; farmers from south central, northeast, west central, and western Nebraska; crop consultants; and University of Nebraska‐Lincoln faculty. The main goal of the Network is to enable the transfer of high quality research‐based information to Nebraskans through a series of demonstration projects established in farmers\u27 fields and implement newer tools and technologies to address and enhance plant water use efficiency, water conservation, and reduce energy consumption for irrigation. The demonstration projects are supported by the scientifically‐based field research and evaluation projects conducted at the University of Nebraska‐Lincoln, South Central Agricultural Laboratory located near Clay Center, Nebraska. The Network was formed with only 15 farmers as collaborators in only one of the 23 NRDs in 2005. As of late 2009, the number of active collaborators has increased to over 300 in 12 NRDs and 35 of 93 counties. The Network is impacting both water and energy conservation due to farmers adopting information and newer technologies for irrigation management. The NAWMDN is helping participants to improve irrigation management and efficiency by monitoring plant growth stages and development, soil moisture, and crop evapotranspiration. As a result, they are reducing irrigation water application amounts and associated energy savings is leading to greater profitability to participating farmers. This article describes the goals and objectives of the Network, technical and educational components, operational functions, and procedures used in the NAWMDN. The quantitative impacts in terms of water and energy conservation are reported
    • 

    corecore