4,219 research outputs found

    Amplifying effects of land-use change on future atmospheric CO2 levels

    Get PDF
    We constructed a model to analyze the interactions between land-use change and atmospheric CO2 during the recent past and for the future. The primary impact of the conversion of forested lands to cultivated lands is to increase atmospheric CO2, via losses of biomass and soil carbon to the atmosphere. This increase is likely to continue in the next decades, but its magnitude can vary according to each land-use scenario. We show that this first-order effect is further amplified by the correlated diminution of terrestrial sinks, because when croplands replace forests, the turnover time of excess carbon in the biosphere decreases, and hence the sink capacity of terrestrial ecosystems decreases. This effect acts to further increase by up to 100 ppm the CO2 level reached by 2100, and it is ofthe same order of magnitude, although smaller, than climate-carbon feedbacks. Uncertainties on the magnitude of this land-use induced effect are large, because of uncertainties in the sink role of terrestrial ecosystems in the future and because of uncertainties inherent to the modeling of land-use induced carbon emissions. Such an extra rise in atmospheric CO2 is however partially offset by the ocean reservoir and by sinks operating over undisturbed, pristine ecosystems, suggesting that conserving pristine forests with long turnover times might be efficient in mitigating the greenhouse effectland-use change; carbon cycle; future scenarios

    Nitrification amplifies the decreasing trends of atmospheric oxygen and implies a larger land carbon uptake

    Get PDF
    [1] Atmospheric O-2 trend measurements are used to partition global oceanic and land biotic carbon sinks on a multiannual basis. The underlying principle is that a terrestrial uptake or release of CO<sub>2</sub> is accompanied by an opposite flux of O-2. The molar ratio of the CO<sub>2</sub> and O-2 terrestrial fluxes should be 1, if no other elements are considered. However, reactive nitrogen produced by human activities (e.g., fertilizers, N deposition) is also being incorporated into plant tissues. The various reaction pathways of the terrestrial nitrogen cycle cause fluxes of atmospheric O-2. Thus the cycles of nitrogen, carbon, and oxygen must be linked together. We report here on previously unconsidered anthropogenic nitrogen-related mechanisms which impact atmospheric O-2 trends and thus the derived global carbon sinks. In particular, we speculate that anthropogenic-driven changes are driving the global nitrogen cycle to a more oxidized state, primarily through nitrification, nitrate fertilizer industrial production, and combustion of fossil fuels and anthropogenic biomass burning. The sum of these nitrogen-related processes acts to additionally decrease atmospheric O-2 and slightly increase atmospheric CO<sub>2</sub>. We have calculated that the effective land biotic O-2: CO<sub>2</sub> molar ratio ranges between 0.76 and 1.04 rather than 1.10 ( moles of O-2 produced per mole of CO<sub>2</sub> consumed) over the period 1993 - 2003, depending on which of four contrasting nitrogen oxidation and reduction pathway scenarios is used. Using the scenario in which we have most confidence, this implies a 0.23 PgC yr(-1) correction to the global land biotic and oceanic carbon sinks of most recently reported estimates over 1993 - 2003, with the land biotic sink becoming larger and the oceanic sink smaller. We have attributed large uncertainties of 100% to all nitrogen-related O-2 and CO<sub>2</sub> fluxes and this corresponds up to +/- 0.09 PgC yr(-1) increase in global carbon sink uncertainties. Thus accounting for anthropogenic nitrogen-related terrestrial fluxes of O-2 results in a 45% larger land biotic sink of 0.74 +/- 0.78 PgC yr(-1) and a slightly smaller oceanic sink of 2.01 +/- 0.66 PgC yr(-1) for the decade 1993 - 2003. [References: 38

    Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Get PDF
    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal patterns of winter ecosystem respiration (Reco) of northern ecosystems are poorly understood. For this reason, we analyzed eddy covariance flux data from 57 ecosystem sites ranging from ~35° N to ~70° N. Deciduous forests were characterized by the highest winter Reco rates (0.90 ± 0.39 g C m-2 d-1), when winter is defined as the period during which daily air temperature remains below 0 °C. By contrast, arctic wetlands had the lowest winter Reco rates (0.02 ± 0.02 g C m-2 d-1). Mixed forests, evergreen needle-leaved forests, grasslands, croplands and boreal wetlands were characterized by intermediate winter Reco rates (g C m-2 d-1) of 0.70(±0.33), 0.60(±0.38), 0.62(±0.43), 0.49(±0.22) and 0.27(±0.08), respectively. Our cross site analysis showed that winter air (Tair) and soil (Tsoil) temperature played a dominating role in determining the spatial patterns of winter Reco in both forest and managed ecosystems (grasslands and croplands). Besides temperature, the seasonal amplitude of the leaf area index (LAI), inferred from satellite observation, or growing season gross primary productivity, which we use here as a proxy for the amount of recent carbon available for Reco in the subsequent winter, played a marginal role in winter CO2 emissions from forest ecosystems. We found that winter Reco sensitivity to temperature variation across space (QS) was higher than the one over time (interannual, QT). This can be expected because QS not only accounts for climate gradients across sites but also for (positively correlated) the spatial variability of substrate quantity. Thus, if the models estimate future warming impacts on Reco based on QS rather than QT, this could overestimate the impact of temperature change

    The impact of future climate change and potential adaptation methods on Maize yields in West Africa

    Get PDF
    International audienceMaize (Zea mays) is one of the staple crops of West Africa and is therefore of high importance with regard to future food security. The ability of West Africa to produce enough food is critical as the population is expected to increase well into the twenty-first century. In this study, a process-based crop model is used to project maize yields in Africa for global temperatures 2 K and 4 K above the preindustrial control. This study investigates how yields and crop failure rates are influenced by climate change and the efficacy of adaptation methods to mitigate the effects of climate change. To account for the uncertainties in future climate projections, multiple model runs have been performed at specific warming levels of + 2 K and + 4 K to give a better estimate of future crop yields. Under a warming of + 2 K, the maize yield is projected to reduce by 5.9% with an increase in both mild and severe crop failure rates. Mild and severe crop failures are yields 1 and 1.5 standard deviations below the observed yield. At a warming of + 4 K, the results show a yield reduction of 37% and severe crop failures which previously only occurred once in 19.7 years are expected to happen every 2.5 years. Crops simulated with a resistance to high temperature stress show an increase in yields in all climate conditions compared to unadapted crops; however, they still experience more crop failures than the unadapted crop in the control climate

    Pathways for balancing CO2 emissions and sinks

    Get PDF
    Imbalance-P paper Contact with: Josep Peñuelas, [email protected] December 2015 in Paris, leaders committed to achieve global, net decarbonization of human activities before 2100. This achievement would halt and even reverse anthropogenic climate change through the net removal of carbon from the atmosphere. However, the Paris documents contain few specific prescriptions for emissions mitigation, leaving various countries to pursue their own agendas. In this analysis, we project energy and land-use emissions mitigation pathways through 2100, subject to best-available parameterization of carbon-climate feedbacks and interdependencies. We find that, barring unforeseen and transformative technological advancement, anthropogenic emissions need to peak within the next 10 years, to maintain realistic pathways to meeting the COP21 emissions and warming targets. Fossil fuel consumption will probably need to be reduced below a quarter of primary energy supply by 2100 and the allowable consumption rate drops even further if negative emissions technologies remain technologically or economically unfeasible at the global scale

    Tropical forest restoration: Fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks

    Get PDF
    Due to intensifying human disturbance, over half of the world's tropical forests are reforested or afforested secondary forests or plantations. Understanding the resilience of carbon (C) stocks in these forests, and estimating the extent to which they can provide equivalent carbon (C) sequestration and stabilization to the old growth forest they replace, is critical for the global C balance. In this study, we combined estimates of biomass C stocks with a detailed assessment of soil C pools in bare land, Eucalyptus plantation, secondary forest and natural old-growth forest after over 50 years of forest restoration in a degraded tropical region of South China. We used isotope studies, density fractionation and physical fractionation to determine the age and stability of soil C pools at different soil depths. After 52 years, the secondary forests had equivalent biomass C stocks to natural forest, whereas soil C stocks were still much higher in natural forest (97.42 t/ha) than in secondary forest (58.75 t/ha) or Eucalyptus plantation (38.99 t/ha) and lowest in bare land (19.9 t/ha). Analysis of ÎŽ13C values revealed that most of the C in the soil surface horizons in the secondary forest was new C, with a limited increase of more recalcitrant old C, and limited accumulation of C in deeper soil horizons. However, occlusion of C in microaggregates in the surface soil layer was similar across forested sites, which suggests that there is great potential for additional soil C sequestration and stabilization in the secondary forest and Eucalyptus plantation. Collectively, our results demonstrate that reforestation on degraded tropical land can restore biomass C and surface soil C stocks within a few decades, but much longer recovery times are needed to restore recalcitrant C pools and C stocks at depth. Repeated harvesting and disturbance in rotation plantations had a substantial negative impact on the recovery of soil C stocks. We suggest that current calculations of soil C in secondary tropical forests (e.g. IPCC Guidelines for National Greenhouse Gas Inventories) could overestimate soil C sequestration and stabilization levels in secondary forests and plantations
    • 

    corecore