2,762 research outputs found

    Coupling mechanisms between the contralateral legs of a walking insect (Carausius morosus)

    Get PDF
    Cruse H, Knauth A. Coupling mechanisms between the contralateral legs of a walking insect (Carausius morosus). The journal of experimental biology. 1989;144(1):199-213.Interactions between contralateral legs of stick insects during walking were examined in the absence of mechanical coupling between the legs by studying animals walking on a horizontal plane covered with a thin film of silicone oil. Investigations of undisturbed walks showed that contralateral coupling is weaker han ipsilateral coupling. Two types of influence were found, (i) For each pair of front, middle and rear legs, when one leg started a retraction movement, the probability for the contralateral leg to start a protraction was increased, (ii) For front- and hind-leg pairs, it was found that the probability of starting a protraction in one leg was also increased, the farther the other leg was moved backwards during retraction. Whether such influences exist between middle legs could not be determined. Both ‘excitatory’ mechanisms very much resemble those influences which have been found to exist between ipsilateral legs. However, in contrast to ipsilateral legs, the interaction between two contralateral legs was found to act in both directions

    Electrical properties and defect chemistry of anatase (TiO2)

    Get PDF
    The electrical properties of pure Anatase are investigated by impedance spectroscopy as function of temperature and oxygen partial pressure. The experimental results are fully interpreted by point defect chemistry. A transition from predominant Schottky to Frenkel cation disorder is observed when the temperature increases and/or the oxygen partial pressure decreases. The reduction enthalpies are near those obtained for Rutile in previous studies

    Hot pressing of nanocrystalline TiO2 (anatase) ceramics with controlled microstructure

    Get PDF
    The preparation conditions of nanocrystalline phase-pure TiO2 anatase ceramics by hot pressing are described. Density, surface area, pore size distribution and grain size are determined by various techniques, including gas adsorption, mercury porosimetry, transmission electron microscopy (TEM) and X-ray diffraction (XRD). The evolution of the structural parameters is followed as function of temperature and pressure programme. It is shown that the porosity, grain and pore size of the ceramics can be controlled by a suitable choice of experimental conditions. Ceramics with densities higher than 90% of the theoretical limit with a mean grain size of 30 nm can be obtained at temperatures as low as 490 ◦C under 0.45 GPa for 2 h. The experimental results are discussed in view of the sintering theory
    corecore