273,763 research outputs found

    An Alternating Direction Algorithm for Matrix Completion with Nonnegative Factors

    Full text link
    This paper introduces an algorithm for the nonnegative matrix factorization-and-completion problem, which aims to find nonnegative low-rank matrices X and Y so that the product XY approximates a nonnegative data matrix M whose elements are partially known (to a certain accuracy). This problem aggregates two existing problems: (i) nonnegative matrix factorization where all entries of M are given, and (ii) low-rank matrix completion where nonnegativity is not required. By taking the advantages of both nonnegativity and low-rankness, one can generally obtain superior results than those of just using one of the two properties. We propose to solve the non-convex constrained least-squares problem using an algorithm based on the classic alternating direction augmented Lagrangian method. Preliminary convergence properties of the algorithm and numerical simulation results are presented. Compared to a recent algorithm for nonnegative matrix factorization, the proposed algorithm produces factorizations of similar quality using only about half of the matrix entries. On tasks of recovering incomplete grayscale and hyperspectral images, the proposed algorithm yields overall better qualities than those produced by two recent matrix-completion algorithms that do not exploit nonnegativity

    Business and financial services: new engine of economic growth?

    Get PDF
    Does unbalanced sectoral productivity growth inevitably lead to continuous shift of resources to the less productive sectors and stagnation in aggregate productivity? This paper attempts to integrate the traditional stagnationist and the modern optimist arguments within a numerical simulation framework. The simulation framework consists of an applied general equilibrium multi-sectoral growth model for a small open regional economy that incorporates unbalanced sectoral growth and the growing role of business and financial services as intermediate service providers. The simulation results lend support to the stagnationist view in the long run but reveal some unconventional comparative-static properties in the short- to medium run

    Depicting urban boundaries from a mobility network of spatial interactions: A case study of Great Britain with geo-located Twitter data

    Full text link
    Existing urban boundaries are usually defined by government agencies for administrative, economic, and political purposes. Defining urban boundaries that consider socio-economic relationships and citizen commute patterns is important for many aspects of urban and regional planning. In this paper, we describe a method to delineate urban boundaries based upon human interactions with physical space inferred from social media. Specifically, we depicted the urban boundaries of Great Britain using a mobility network of Twitter user spatial interactions, which was inferred from over 69 million geo-located tweets. We define the non-administrative anthropographic boundaries in a hierarchical fashion based on different physical movement ranges of users derived from the collective mobility patterns of Twitter users in Great Britain. The results of strongly connected urban regions in the form of communities in the network space yield geographically cohesive, non-overlapping urban areas, which provide a clear delineation of the non-administrative anthropographic urban boundaries of Great Britain. The method was applied to both national (Great Britain) and municipal scales (the London metropolis). While our results corresponded well with the administrative boundaries, many unexpected and interesting boundaries were identified. Importantly, as the depicted urban boundaries exhibited a strong instance of spatial proximity, we employed a gravity model to understand the distance decay effects in shaping the delineated urban boundaries. The model explains how geographical distances found in the mobility patterns affect the interaction intensity among different non-administrative anthropographic urban areas, which provides new insights into human spatial interactions with urban space.Comment: 32 pages, 7 figures, International Journal of Geographic Information Scienc