7,547 research outputs found

    AFE dynamic effects in inhomogeneous plasmas

    Get PDF
    The Microwave Reflectometer Ionization Sensor (MRIS) is an instrument on the Aeroassist Flight Experiment (AFE) satellite which will be deployed from the space shuttle. The flow characteristic around a hypersonic bluff reentry vehicle will be measured by the AFE. The general mission of the MRIS is to measure the electron density within the range from 10(exp12) to 10(exp 15) electrons per cu cm and determine the distance to the location of each measured from the surface of the aerobrake. These measurements will be compared with prior aerothermodynamic computer code predictions. Since a knowledge of plasma dynamic effects is important for MRIS design and post flight analysis, it is of interest to consider any possibility of plasma dynamic effects and especially in inhomogeneous plasmas. Of particular interest is the need to study plasma dynamic effects that may emerge from a flow field stationary state that was determined without regard to electric or magnetic fields

    Radiometer system requirements for microwave remote sensing from satellites

    Get PDF
    An area of increasing interest is the establishment of a significant research program in microwave remote sensing from satellites, particularly geosynchronous satellites. Due to the relatively small resolution cell sizes, a severe requirement is placed on beam efficiency specifications for the radiometer antenna. Geostationary satellite microwave radiometers could continuously monitor several important geophysical parameters over the world's oceans. These parameters include the columnar content of atmospheric liquid water (both cloud and rain) and water vapor, air temperature profiles, and possibly sea surface temperature. Two principle features of performance are of concern. The first is the ability of the radiometer system to resolve absolute temperatures with a very small absolute error, a capability that depends on radiometer system stability, on frequency bandwidth, and on footprint dwell time. The second is the ability of the radiometer to resolve changes in temperature from one resolution cell to the next when these temperatures are subject to wide variation over the overall field-of-view of the instrument. Both of these features are involved in the use of the radiometer data to construct high-resolution temperature maps with high absolute accuracy

    Robust controller designs for second-order dynamic system: A virtual passive approach

    Get PDF
    A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design

    Robust eigensystem assignment for second-order estimators

    Get PDF
    An approach for the robust eigensystem assignment of flexible structures using full state or output feedback is developed. Using the second-order dynamic equations, the approach can assign the eigenvalues of the system via velocity and displacement feedbacks, or acceleration and velocity feedbacks. The eigenvalues and eigenvectors of the system are assigned, via the second-order eigenvalue problem for the structural system, in two steps. First, an orthonormal basis spanning the attainable closed-loop eigenvector space corresponding to each desired closed-loop eigenvalue is generated using the Singular Value or QR decompositions. Second, a sequential procedure is used to choose a set of closed-loop eigenvectors that are as close as possible to the column space of a well-conditioned target matrix. Among the possible choices of the target matrix, the closest unitary matrix to the open-loop eigenvector matrix appears to be a suitable choice. A numerical example is given to illustrate the proposed algorithm

    Research in slewing and tracking control

    Get PDF
    Technology areas are identified in which better analytical and/or experimental methods are needed to adequately and accurately control the dynamic responses of multibody space platforms such as the Space Station and the Radiometer Spacecraft. A generic space station model is used to experimentally evaluate current control technologies and a radiometer spacecraft model is used to numerically test a new theoretical development for nonlinear three-axis maneuvers. Active suppression of flexible body vibrations induced by large angle maneuvers is studied with multiple torque inputs and multiple measurement outputs. These active suppression tests identify the hardware requirements and adequacy of various controller designs
    corecore