533 research outputs found

    Sediment Nutrient Accumulation and Nutrient Availability in Two Tidal Freshwater Marshes Along the Mattaponi River, Virginia, USA

    Get PDF
    Sediment deposition is the main mechanism of nutrient delivery to tidal freshwater marshes (TFMs). We quantified sediment nutrient accumulation in TFMs upstream and downstream of a proposed water withdrawal project on the Mattaponi River, Virginia. Our goal was to assess nutrient availability by comparing relative rates of carbon (C), nitrogen (N), and phosphorus (P) accumulated in sediments with the C, N, and P stoichiometries of surface soils and above ground plant tissues. Surface soil nutrient contents (0.60–0.92% N and 0.09–0.13% P) were low but within reported ranges for TFMs in the eastern US. In both marshes, soil nutrient pools and C, N, and P stoichiometries were closely associated with sedimentation patterns. Differences between marshes were more striking than spatial variations within marshes: both C, N, and P accumulation during summer, and annual P accumulation rates (0.16 and 0.04 g P m−2 year−1, respectively) in sediments were significantly higher at the downstream than at the upstream marsh. Nitrogen:P ratiosbiomass, surface soils, and sediments suggest that N limits primary production in these marshes, but experimental additions of N and/or P did not significantly increase above ground productivity in either marsh. Lower soil N:P ratios are consistent with higher rates of sediment P accumulation at the downstream site, perhaps due to its greater proximity to the estuarine turbidity maximum

    Plant Impacts on Competition Between Tidal Marsh Microbes

    Get PDF
    *Background/Question/Methods* 
Wetlands can store a lot of carbon in soils, but wetland microbial respiration also releases a great deal of carbon dioxide (CO~2~) and methane (CH~4~). These gases combined are responsible for ~80% of the radiative climate forcing. Understanding the controls on microbial respiration and the importance of different metabolic pathways has important climate change implications. Plants affect microbial respiration in wetlands by impacting the available soil carbon pool and the redoximorphic conditions of the soil environment. These plant impacts in turn affect microbial competition. In this study we were particularly interested in determining the role of soil carbon quality versus environmental factors in influencing the relative contributions of denitrification, iron reduction, sulfate reduction, and methanogenesis to overall microbial respiration in a freshwater tidal wetland (Jug Bay) and a brackish marsh (Jack Bay) on the Chesapeake Bay, USA. We collected soils from each site, homogenized them, and buried samples at their original location or at the opposite location. A year and a half later samples were collected (October, 2008) and analyzed for the amount of respiration contributed by different metabolic pathways. 

*Results/Conclusions* 
Overall microbial respiration rates were higher in the soil with the higher carbon content (Jack Bay average soil organic matter = 54%; Jug Bay = 18%). However, when normalized to soil carbon content, respiration rates were actually higher for the soil with lower carbon content at both locations (Jack Bay soils total carbon respired = 4.4 umols per g soil C per day; Jug Bay soils = 7.4 umols per g soil C per day). These results suggest that carbon quality, more than quantity or environmental factors such as sulfate availability, drives microbial respiration rates. We conclude that plant carbon inputs to soils have a lasting legacy on microbial competition in wetlands. 
&#xa

    Global change accelerates carbon assimilation by a wetland ecosystem engineer

    Get PDF
    The primary productivity of coastal wetlands is changing dramatically in response to rising atmospheric carbon dioxide (CO2) concentrations, nitrogen (N) enrichment, and invasions by novel species, potentially altering their ecosystem services and resilience to sea level rise. In order to determine how these interacting global change factors will affect coastal wetland productivity, we quantified growing-season carbon assimilation (≈gross primary productivity, or GPP) and carbon retained in living plant biomass (≈net primary productivity, or NPP) of North American mid-Atlantic saltmarshes invaded by Phragmites australis (common reed) under four treatment conditions: two levels of CO2 (ambient and +300 ppm) crossed with two levels of N (0 and 25 g N added m−2 yr−1). For GPP, we combined descriptions of canopy structure and leaf-level photosynthesis in a simulation model, using empirical data from an open-top chamber field study. Under ambient CO2 and low N loading (i.e., the Control), we determined GPP to be 1.66 ± 0.05 kg C m−2 yr−1 at a typical Phragmites stand density. Individually, elevated CO2 and N enrichment increased GPP by 44 and 60%, respectively. Changes under N enrichment came largely from stimulation to carbon assimilation early and late in the growing season, while changes from CO2 came from stimulation during the early and mid-growing season. In combination, elevated CO2 and N enrichment increased GPP by 95% over the Control, yielding 3.24 ± 0.08 kg C m−2 yr−1. We used biomass data to calculate NPP, and determined that it represented 44%–60% of GPP, with global change conditions decreasing carbon retention compared to the Control. Our results indicate that Phragmites invasions in eutrophied saltmarshes are driven, in part, by extended phenology yielding 3.1× greater NPP than native marsh. Further, we can expect elevated CO2 to amplify Phragmites productivity throughout the growing season, with potential implications including accelerated spread and greater carbon storage belowground

    Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2

    Get PDF
    Terrestrial ecosystem responses to climate change are mediated by complex plant–soil feedbacks that are poorly understood, but often driven by the balance of nutrient supply and demand. We actively increased aboveground plant-surface temperature, belowground soil temperature, and atmospheric CO2 in a brackish marsh and found nonlinear and nonadditive feedbacks in plant responses. Changes in root-to-shoot allocation by sedges were nonlinear, with peak belowground allocation occurring at +1.7 °C in both years. Above 1.7 °C, allocation to root versus shoot production decreased with increasing warming such that there were no differences in root biomass between ambient and +5.1 °C plots in either year. Elevated CO2 altered this response when crossed with +5.1 °C, increasing root-to-shoot allocation due to increased plant nitrogen demand and, consequently, root production. We suggest these nonlinear responses to warming are caused by asynchrony between the thresholds that trigger increased plant nitrogen (N) demand versus increased N mineralization rates. The resulting shifts in biomass allocation between roots and shoots have important consequences for forecasting terrestrial ecosystem responses to climate change and understanding global trends

    Coastal Forest Seawater Exposure Increases Stem Methane Concentration

    Get PDF
    Methane (CH4) exchange between trees and the atmosphere has recently emerged as an important, but poorly quantified process regulating global climate. The sources (soil and/or tree) and mechanisms driving the increase of CH4 in trees and degassing to the atmosphere are inadequately understood, particularly for coastal forests facing increased exposure to seawater. We investigated the eco‐physiological relationship between tree stem wood density, soil and stem oxygen saturation (an indicator of redox state), soil and stem CH4 concentrations, soil and stem carbon dioxide (CO2) concentrations, and soil salinity in five forests along the United States coastline. We aim to evaluate the mechanisms underlying greenhouse gas increase in trees and the influence of seawater exposure on stem CH4 accumulation. Seawater exposure corresponded with decreased tree survival and increased tree stem methane. Tree stem wood density was significantly correlated with increased stem CH4 in seawater exposed gymnosperms, indicating that dying gymnosperm trees may accumulate higher levels of CH4 in association with seawater flooding. Further, we found that significant differences in seawater exposed and unexposed gymnosperm tree populations are associated with increased soil and stem CH4 and CO2, indicating that seawater exposure significantly impacts soil and stem greenhouse gas abundance. Our results provide new insight into the potential mechanisms driving tree CH4 accumulation within gymnosperm coastal forests

    Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    Get PDF
    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths. Observed patterns in water optical and biogeochemical variables were very consistent among different marsh systems and throughout the year, despite continued tidal exchange, implying rapid transformation of marsh DOM in the estuary through both photochemical and microbial processes. These findings illustrate the importance of tidal marsh ecosystems as sources, sinks and/or transformers of biologically important nutrients, carbon and colored dissolved organic compounds, and their influence on short-term biological, optical and biogeochemical variability in coastal waters

    Vegetation Type and Decomposition Priming Mediate Brackish Marsh Carbon Accumulation Under Interacting Facets of Global Change

    Get PDF
    Coastal wetland carbon pools are globally important, but their response to interacting facets of global change remain unclear. Numerical models neglect species-specific vegetation responses to sea level rise (SLR) and elevated CO2 (eCO2) that are observed in field experiments, while field experiments cannot address the long-term feedbacks between flooding and soil growth that models show are important. Here, we present a novel numerical model of marsh carbon accumulation parameterized with empirical observations from a long-running eCO2 experiment in an organic rich, brackish marsh. Model results indicate that eCO2 and SLR interact synergistically to increase soil carbon burial, driven by shifts in plant community composition and soil volume expansion. However, newly parameterized interactions between plant biomass and decomposition (i.e. soil priming) reduce the impact of eCO2 on marsh survival, and by inference, the impact of eCO2 on soil carbon accumulation

    Representing the function and sensitivity of coastal interfaces in Earth system models

    Get PDF
    Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth\u27s climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface. Coastal systems are hotspots of ecological, geochemical and economic activity, yet their dynamics are not accurately represented in global models. In this Review, Ward and colleagues assess the current state of coastal science and recommend approaches for including the coastal interface in predictive models

    Plant species determine tidal wetland methane response to sea level rise

    Get PDF
    Blue carbon (C) ecosystems are among the most effective C sinks of the biosphere, but methane (CH4) emissions can offset their climate cooling effect. Drivers of CH4 emissions from blue C ecosystems and effects of global change are poorly understood. Here we test for the effects of sea level rise (SLR) and its interactions with elevated atmospheric CO2, eutrophication, and plant community composition on CH4 emissions from an estuarine tidal wetland. Changes in CH4 emissions with SLR are primarily mediated by shifts in plant community composition and associated plant traits that determine both the direction and magnitude of SLR effects on CH4 emissions. We furthermore show strong stimulation of CH4 emissions by elevated atmospheric CO2, whereas effects of eutrophication are not significant. Overall, our findings demonstrate a high sensitivity of CH4 emissions to global change with important implications for modeling greenhouse-gas dynamics of blue C ecosystems
    corecore