1,761 research outputs found

    Design modeling for shape optimization

    Get PDF
    Some important aspects of design modeling for shape optimization are discussed for both stamped sheet metal components and cast solid components. For stamped components the basis for the modeling approach is a boundary design function. Design parameters control the shape of 2-D regions. For more complex, folded plate components, the 2-D regions can be assembled using translation and rotation operations. The analysis model is automatically created using a mesh generation procedure requiring only boundary data. For less complex solid components, it was found that this approach is not suitable. For these structures, the finite element models are typically created using very sophisticated graphical modeling systems. A new approach which overlays a parameterized surface design model on an existing analysis model is described. To summarize, the future needs for solid shape design is described in terms of an extension of the previously described 2-D capability

    Earth science research

    Get PDF
    The analysis of ground-truth data from the boreal forest plots in the Superior National Forest, Minnesota, was completed. Development of statistical methods was completed for dimension analysis (equations to estimate the biomass of trees from measurements of diameter and height). The dimension-analysis equations were applied to the data obtained from ground-truth plots, to estimate the biomass. Classification and analyses of remote sensing images of the Superior National Forest were done as a test of the technique to determine forest biomass and ecological state by remote sensing. Data was archived on diskette and tape and transferred to UCSB to be used in subsequent research

    Structural Optimization in automotive design

    Get PDF
    Although mathematical structural optimization has been an active research area for twenty years, there has been relatively little penetration into the design process. Experience indicates that often this is due to the traditional layout-analysis design process. In many cases, optimization efforts have been outgrowths of analysis groups which are themselves appendages to the traditional design process. As a result, optimization is often introduced into the design process too late to have a significant effect because many potential design variables have already been fixed. A series of examples are given to indicate how structural optimization has been effectively integrated into the design process

    COVER Project and Earth resources research transition

    Get PDF
    Results of research in the remote sensing of natural boreal forest vegetation (the COVER project) are summarized. The study objectives were to establish a baseline forest test site; develop transforms of LANDSAT MSS and TM data for forest composition, biomass, leaf area index, and net primary productivity; and perform tasks required for testing hypotheses regarding observed spectral responses to changes in leaf area index in aspen. In addition, the transfer and documentation of data collected in the COVER project (removed from the Johnson Space Center following the discontinuation of Earth resources research at that facility) is described

    Large Feet

    Get PDF

    Accuracy of the domain method for the material derivative approach to shape design sensitivities

    Get PDF
    Numerical accuracy for the boundary and domain methods of the material derivative approach to shape design sensitivities is investigated through the use of mesh refinement. The results show that the domain method is generally more accurate than the boundary method, using the finite element technique. It is also shown that the domain method is equivalent, under certain assumptions, to the implicit differentiation approach not only theoretically but also numerically

    Mirage

    Get PDF

    Assessing the New Criteria for Newborn Screening

    Get PDF

    Prenatal Diagnosis and the Selection of Children

    Get PDF

    Distributed Control of Electric Vehicle Charging: Privacy, Performance, and Processing Tradeoffs

    Get PDF
    As global climate change concerns, technological advancements, and economic shifts increase the adoption of electric vehicles, it is vital to study how best to integrate these into our existing energy systems. Electric vehicles (EVs) are on track to quickly become a large factor in the energy grid. If left uncoordinated, the charging of EVs will become a burden on the grid by increasing peak demand and overloading transformers. However, with proper charging control strategies, the problems can be mitigated without the need for expensive capital investments. Distributed control methods are a powerful tool to coordinate the charging, but it will be important to assess the trade-offs between performance, information privacy, and computational speed between different control strategies. This work presents a comprehensive comparison between four distributed control algorithms simulating two case studies constrained by dynamic transformer temperature and current limits. The transformer temperature dynamics are inherently nonlinear and this implementation is contrasted with a piece-wise linear convex relaxation. The more commonly distributed control methods of Dual Decomposition and Alternating Direction Method of Multipliers (ADMM) are compared against a relatively new algorithm, Augmented Lagrangian based Alternating Direction Inexact Newton (ALADIN), as well as against a low-information packetized energy management control scheme (PEM). These algorithms are implemented with a receding horizon in two distinct case studies: a local neighborhood scenario with EVs at each network node and a hub scenario where each node represents a collection of EVs. Finally, these simulation results are compared and analyzed to assess the methods’ performance, privacy, and processing metrics for each case study as no algorithm is found to be optimal for all applications
    • …
    corecore