39,482 research outputs found

    Intra-Row Weed Control by use of Band Steaming

    Get PDF
    Soil disinfection by steam is a well-known technique used within horticulture and market gardening. The most common steam application technique is sheet steaming, where the soil is covered with a thermo resistant sheet, which is sealed at the edges and then blowing steam under the sheet so that the steam penetrates through the soil. The method is effective for control of weed, plant pathogens and nematodes. However, high fuel consumption and low capacity are serious disadvantages. Moreover all living organisms, harmful and useful, in the treated soil are killed, and therefore the method is not in line with the basis ideas of organic farming. A new concept and technique for performing band heating has been developed. By heating only a narrow band of 6–8 cm around the rows to a depth of 5 cm, energy savings of more than 90% can be obtained. In practice, the system may be combined with a computer-controlled sowing machine for the subsequent sowing of plants in the centre of the treated bands. The system will result in the crop growing in rows free of plant competition. It was seen that soil temperatures of 80-90°C, were needed to achieve god effect in the field

    Comparing conventional and improved organic vegetable rotations, yields and nitrogen husbandry

    Get PDF
    During 2005 to 2009 three approaches to organic vegetable rotations were compared to a conventional rotation in an interdisciplinary project. The organic rotations differed in their reliance on animal manure vs. cover crops and intercrops, but the rotation of main vegetable and cereal crops were identical in the four rotations. One organic rotation (O1) relied on import of manure for supply of nutrients, in another (O2) cover crops were used to replace most of the manure import, and in (O3) also intercrops were grown to improve natural pest regulation. The yearly import of nitrogen were on average 149, 94, 28, and 28 kg N.ha-1 in C, O1, O2, and O3 respectively. On average the yield in the O1 system was 83% of the yield in the conventional system. In the O2 rotation the yield was the same, though the nutrient import was much lower, whereas the intercrops in O3 reduced the yield to 70% of the conventional fotation. The effect on single crops varied with organic yields ranging from 60% (onion) to almost 100% (carrots, oats) of conventional yields. Crop root growth varied strongly among crops with rooting depths of less than 0.4 m (onions) to more than 2 m (cabbage, rye, fodder radish catch crop). Root growth was unaffected by cropping system, but the inclusion of deep rooted catch crops and green manures in O2 and O3 increased the total root exploitation of the soil strongly. Thus, while the O1 and O2 systems had almost identical yields and N uptake there were large differences in their effects on soil N; e.g. the subsoil (1-2.5 m) N content was on average 18 kg N.ha-1 in the O2 compared 61 and 53 kg N.ha-1 in the C and O1 respectively, indicating strongly reduced N leaching losses in O2

    Nitrogen Turnover on Organic and Conventional Mixed Farms

    Get PDF
    Separate focus on crop fertilization or feeding practices inadequately describes nitrogen (N) loss from mixed dairy farms because of (1) interaction between animal and crop production and between the production system and the manager, and (2) uncertainties of herd N production and crop N utilization. Therefore a systems approach was used to study N turnover and N efficiency on 16 conventional and 14 organic private Danish farms with mixed animal (dairy) and crop production. There were significant differences in N surplus at the farm level (242 kg. N/ha. vs. 124 kg. N/ha. on conventional and organic dairy farms respectively) with a correlation between stocking rate and N surplus. N efficiency was calculated as the output of N in animal products divided by the net N import in fodder, manure and fertilizer. N turnover in herd and individual crops calculated on selected farms showed differences in organic and conventional crop N utilization. This is explained via a discussion of the rationality behind the current way of planning the optimum fertilizer application in conventional agriculture. The concept of marginal N efficiency is insufficient for correcting problems of N loss from dairy farms. Substantial reductions in N loss from conventional mixed dairy farms is probably unlikely without lower production intensity. The concept of mean farm unit N efficiency might be a way to describe the relation between production and N loss to facilitate regulation. This concept is linked to differing goals of agricultural development — i.e. intensification and separation vs. extensification and integration. It is discussed how studies in private farms — using organic farms as selected critical cases — can demonstrate possibilities for balancing production and environmental concern

    Thermal Band Heating for Intra-Row Weed Control

    Get PDF
    Surface steaming of soil is a very energy-intensive process, and consequently, efforts have been made to develop a machine for narrow-band steaming of the soil under and around rows of cultivated plants prior to seeding. The use of this machine may achieve up to 90% energy savings, and will also reduce the amount of damage to the flora and fauna. A special test rig has been developed with the objective of obtaining new information about narrow-band soil steaming. For a detailed analysis of the temperature profile in a cross-section of the processed band, an apparatus has been developed especially to record the temperatures obtained at 63 locations and at seven levels across the ditch. On the basis of the results from the test rig, a prototype band-steamer for field use has been developed. Tests have shown that soil temperatures exceeding 70C will be needed to protect against germination of weed seeds. For band heating such a treatment in 50 cm rows requires about 5.8 GJ/ha

    Statistical aspects of experimental designs implemented in designs

    Get PDF
    The report describes the statistical aspects of experimental designs used in an project

    Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops

    Get PDF
    Information is needed about root growth and N uptake of crops under different soil conditions to increase nitrogen use efficiency in horticultural production. The purpose of this study was to investigate if differences in vertical distribution of soil nitrogen (Ninorg) affected root growth and N uptake of a variety of horticultural crops. Two field experiments were performed each over 2 years with shallow or deep placement of soil Ninorg obtained by management of cover crops. Vegetable crops of leek, potato, Chinese cabbage, beetroot, summer squash and white cabbage reached root depths of 0.5, 0.7, 1.3, 1.9, 1.9 and more than 2.4 m, respectively, at harvest, and showed rates of root depth penetration from 0.2 to 1.5 mm day)1 C)1. Shallow placement of soil Ninorg resulted in greater N uptake in the shallow-rooted leek and potato. Deep placement of soil Ninorg resulted in greater rates of root depth penetration in the deep-rooted Chinese cabbage, summer squash and white cabbage, which increased their depth by 0.2–0.4 m. The root frequency was decreased in shallow soil layers (white cabbage) and increased in deep soil layers (Chinese cabbage, summer squash and white cabbage). The influence of vertical distribution of soil Ninorg on root distribution and capacity for depletion of soil Ninorg was much less than the effect of inherent differences between species. Thus, knowledge about differences in root growth between species should be used when designing crop rotations with high N use efficiency

    Intra-Row Weed Control by use of Band Steaming

    Get PDF
    Disinfection of the soil by means of steaming has been a common method for eliminating weeds and fungal diseases. However, surface steaming of soil is a very energy-intensive process, and consequently, efforts have been made to develop a machine for narrow-band steaming of the soil under and around rows of cultivated plants prior to seeding. The use of this machine may achieve up to 90% energy savings, and will also reduce the amount of damage to the flora and fauna. Tests have shown that soil temperatures exceeding 70C will be needed to protect against germination of weed seeds. For band heating such a treatment in 50 cm rows requires about 5.8 GJ/ha
    • …
    corecore