238,481 research outputs found

    Structured Matrix Completion with Applications to Genomic Data Integration

    Get PDF
    Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.Comment: Accepted for publication in Journal of the American Statistical Associatio

    A Note on Thermodynamics of Black Holes in Lovelock Gravity

    Full text link
    The Lovelock gravity consists of the dimensionally extended Euler densities. The geometry and horizon structure of black hole solutions could be quite complicated in this gravity, however, we find that some thermodynamic quantities of the black holes like the mass, Hawking temperature and entropy, have simple forms expressed in terms of horizon radius. The case with black hole horizon being a Ricci flat hypersurface is particularly simple. In that case the black holes are always thermodynamically stable with a positive heat capacity and their entropy still obeys the area formula, which is no longer valid for black holes with positive or negative constant curvature horizon hypersurface. In addition, for black holes in the gravity theory of Ricci scalar plus a 2n2n-dimensional Euler density with a positive coefficient, thermodynamically stable small black holes always exist in D=2n+1D=2n+1 dimensions, which are absent in the case without the Euler density term, while the thermodynamic properties of the black hole solutions with the Euler density term are qualitatively similar to those of black holes without the Euler density term as D>2n+1D>2n+1.Comment: Latex, 10 pages, v2: typos corrected, references added, to appear in PL
    corecore