3,097 research outputs found

    THE IMPACT OF POSTTRAUMATIC STRESS DISORDER ON PERIPHERAL VASCULAR FUNCTION

    Get PDF
    The physiological manifestations of posttraumatic stress disorder (PTSD) have been associated with an increase in risk of cardiovascular disease (CVD) independent of negative lifestyle factors. Peripheral vascular dysfunction may be a mechanism by which PTSD increases CVD risk via increases in oxidative stress, inflammation, and/or sympathetic nervous system activity. PURPOSE: This study sought to examine peripheral vascular function in those with PTSD compared to age-matched controls. METHODS: Eight individuals with PTSD (5 women, 3 men; age 22 ± 2 years), and sixteen healthy controls (CON; 10 women, 6 men, 23 ± 2 years), participated in the study. Leg vascular function was assessed via passive leg movement (PLM) technique and evaluated with Doppler ultrasonography. PLM-induced increases in leg blood flow were quantified as peak change in blood flow from baseline (ΔPeak LBF) and blood flow area under the curve (LBF AUC). RESULTS: Significant differences in leg vascular function were revealed between groups. The PTSD group reported significantly lower ΔPeak LBF (PTSD: 294.16 ± 54.16; CON: 594.78 ± 73.70 ml∙min-1; p = 0.01) and LBF AUC (PTSD: 57.23 ± 24.37; CON: 169.92 ± 29.84 ml; p = 0.02) when compared to the CON group. CONCLUSION: This study revealed that lower limb vascular function is impaired in individuals with PTSD when compared to healthy counterparts.https://scholarscompass.vcu.edu/gradposters/1043/thumbnail.jp

    A comparison of the electrical properties of polymer LEDs based on poly(thiophene)s and PPV-derivatives

    Get PDF
    This thesis describes the electrical properties of conjugated polymer LEDs. It is important to understand these electrical properties in detail for optimisation of the efficiency of the LEDs (the ratio between the amount of photons generated and the amount of charge carriers injected into the structure). It is very well known that proper alignment of the Ferrni-level position of the metallic electrodes to the molecular transport levels of the organic semiconductor enhances the efficiency considerably. This however is only the case if the electrical properties of the device are dominated by charge carrier injection from the contacts. This thesis shows that not all conjugated polymers could be optimised by reducing interfacial barrier heights, but that for some materials bulk electrical properties of the material are dominant. The single-layer and multi-layer device properties of several conjugated polymers [poly(thiophene)s and PPV-derivatives] are compared and this shows that the background concentration of charged species left from the synthesis procedure determines how dominant the bulk properties are in comparison to the contact properties.

    Nitrate variation in sudan hay bales from the same field

    Get PDF
    Individual large round bales of sudan hay from the same cutting and field ranged from 1,525 to 6,250 ppm nitrate (NO3 ), with an average of 2,764 ppm. These results illustrate the substantial variability that can occur in the nitrate content of forage packages because of location in the field and serves to caution producers when feeding such forages

    Temporal contrast-dependent modeling of laser-driven solids - studying femtosecond-nanometer interactions and probing

    Get PDF
    Establishing precise control over the unique beam parameters of laser-accelerated ions from relativistic ultra-short pulse laser-solid interactions has been a major goal for the past 20 years. While the spatio-temporal coupling of laser-pulse and target parameters create transient phenomena at femtosecond-nanometer scales that are decisive for the acceleration performance, these scales have also largely been inaccessible to experimental observation. Computer simulations of laser-driven plasmas provide valuable insight into the physics at play. Nevertheless, predictive capabilities are still lacking due to the massive computational cost to perform these in 3D at high resolution for extended simulation times. This thesis investigates the optimal acceleration of protons from ultra-thin foils following the interaction with an ultra-short ultra-high intensity laser pulse, including realistic contrast conditions up to a picosecond before the main pulse. Advanced ionization methods implemented into the highly scalable, open-source particle-in-cell code PIConGPU enabled this study. Supporting two experimental campaigns, the new methods led to a deeper understanding of the physics of Laser-Wakefield acceleration and Colloidal Crystal melting, respectively, for they now allowed to explain experimental observations with simulated ionization- and plasma dynamics. Subsequently, explorative 3D3V simulations of enhanced laser-ion acceleration were performed on the Swiss supercomputer Piz Daint. There, the inclusion of realistic laser contrast conditions altered the intra-pulse dynamics of the acceleration process significantly. Contrary to a perfect Gaussian pulse, a better spatio-temporal overlap of the protons with the electron sheath origin allowed for full exploitation of the accelerating potential, leading to higher maximum energies. Adapting well-known analytic models allowed to match the results qualitatively and, in chosen cases, quantitatively. However, despite complex 3D plasma dynamics not being reflected within the 1D models, the upper limit of ion acceleration performance within the TNSA scenario can be predicted remarkably well. Radiation signatures obtained from synthetic diagnostics of electrons, protons, and bremsstrahlung photons show that the target state at maximum laser intensity is encoded, previewing how experiments may gain insight into this previously unobservable time frame. Furthermore, as X-ray Free Electron Laser facilities have only recently begun to allow observations at femtosecond-nanometer scales, benchmarking the physics models for solid-density plasma simulations is now in reach. Finally, this thesis presents the first start-to-end simulations of optical-pump, X-ray-probe laser-solid interactions with the photon scattering code ParaTAXIS. The associated PIC simulations guided the planning and execution of an LCLS experiment, demonstrating the first observation of solid-density plasma distribution driven by near-relativistic short-pulse laser pulses at femtosecond-nanometer resolution
    • …
    corecore