18,797 research outputs found

    Understanding complexity: the curvilinear relationship between environmental performance and firm performance

    Get PDF
    The nature of the relationship between environmental performance (EP) and firm performance (FP) of corporations is a long standing and contentious issue in the literature. This study is intended to advance this debate by arguing for the existence of curvilinear relationship and empirically testing the same using survey data on UK manufacturing firms. FP is captured in terms of growth in sales and market share. Our results show evidence for a quadratic relationship—as firms improve their EP, they seem to achieve much higher levels of FP. These results are consistent with the resource-based view of a firm; as firms engage in EP activities, they are able to gain inimitable knowledge that helps in further learning to further improve performance. Based on our results, we suggest that new studies focus on strategies to extend the period of increasing returns and maximizing the benefits of the positive association between EP and FP

    Defining Recursive Predicates in Graph Orders

    Full text link
    We study the first order theory of structures over graphs i.e. structures of the form (G,τ\mathcal{G},\tau) where G\mathcal{G} is the set of all (isomorphism types of) finite undirected graphs and τ\tau some vocabulary. We define the notion of a recursive predicate over graphs using Turing Machine recognizable string encodings of graphs. We also define the notion of an arithmetical relation over graphs using a total order ≤t\leq_t on the set G\mathcal{G} such that (G,≤t\mathcal{G},\leq_t) is isomorphic to (N,≤\mathbb{N},\leq). We introduce the notion of a \textit{capable} structure over graphs, which is one satisfying the conditions : (1) definability of arithmetic, (2) definability of cardinality of a graph, and (3) definability of two particular graph predicates related to vertex labellings of graphs. We then show any capable structure can define every arithmetical predicate over graphs. As a corollary, any capable structure also defines every recursive graph relation. We identify capable structures which are expansions of graph orders, which are structures of the form (G,≤\mathcal{G},\leq) where ≤\leq is a partial order. We show that the subgraph order i.e. (G,≤s\mathcal{G},\leq_s), induced subgraph order with one constant P3P_3 i.e. (G,≤i,P3\mathcal{G},\leq_i,P_3) and an expansion of the minor order for counting edges i.e. (G,≤m,sameSize(x,y)\mathcal{G},\leq_m,sameSize(x,y)) are capable structures. In the course of the proof, we show the definability of several natural graph theoretic predicates in the subgraph order which may be of independent interest. We discuss the implications of our results and connections to Descriptive Complexity

    Superadiabatic Control of Quantum Operations

    Get PDF
    Adiabatic pulses are used extensively to enable robust control of quantum operations. We introduce a new approach to adiabatic control that uses the superadiabatic quality or QQ-factor as a performance metric to design robust, high fidelity pulses. This approach permits the systematic design of quantum control schemes to maximize the adiabaticity of a unitary operation in a particular time interval given the available control resources. The interplay between adiabaticity, fidelity and robustness of the resulting pulses is examined for the case of single-qubit inversion, and superadiabatic pulses are demonstrated to have improved robustness to control errors. A numerical search strategy is developed to find a broader class of adiabatic operations, including multi-qubit adiabatic unitaries. We illustrate the utility of this search strategy by designing control waveforms that adiabatically implement a two-qubit entangling gate for a model NMR system.Comment: 10 pages, 9 figure
    • …
    corecore