658 research outputs found

    Insights into the Function of the Unstructured N-Terminal Domain of Proteins 4.1R and 4.1G in Erythropoiesis

    Get PDF
    Membrane skeletal protein 4.1R is the prototypical member of a family of four highly paralogous proteins that include 4.1G, 4.1N, and 4.1B. Two isoforms of 4.1R (4.1R135 and 4.1R80), as well as 4.1G, are expressed in erythroblasts during terminal differentiation, but only 4.1R80 is present in mature erythrocytes. One goal in the field is to better understand the complex regulation of cell type and isoform-specific expression of 4.1 proteins. To start answering these questions, we are studying in depth the important functions of 4.1 proteins in the organization and function of the membrane skeleton in erythrocytes. We have previously reported that the binding profiles of 4.1R80 and 4.1R135 to membrane proteins and calmodulin are very different despite the similar structure of the membrane-binding domain of 4.1G and 4.1R135. We have accumulated evidence for those differences being caused by the N-terminal 209 amino acids headpiece region (HP). Interestingly, the HP region is an unstructured domain. Here we present an overview of the differences and similarities between 4.1 isoforms and paralogs. We also discuss the biological significance of unstructured domains

    A Petri net approach to fault verification in phased mission systems using the standard deviation technique

    Get PDF
    Health management systems are now standard aspects of complex systems. They monitor the behaviour of components and sub-systems and in the event of unexpected system behaviour diagnose faults that have occurred. Although this process should reduce system downtime it is known that health management systems can generate false faults that do not represent the actual state of the system and cause resources to be wasted. The authors propose a process to address this issue in which Petri nets are used to model complex systems. Faults reported on the system are simulated in the Petri net model to predict the resultant system behaviour. This behaviour is then compared to that from the actual system. Using the standard deviation technique the similarity of the system variables is assessed and the validity of the fault determined. The process has been automated and is tested through application to an experimental rig representing an aircraft fuel system. The success of the process to verify genuine faults and identify false faults in a multi-phase mission is demonstrated. A technique is also presented that is specific to tank leaks where depending on the location and size of the leak, the resulting symptoms will vary

    Basal secretion of lysozyme from human airways in vitro.

    Get PDF
    The aim of this study was to examine the basal release of lysozyme from isolated human lung tissues. Measurements of lysozyme in the fluids derived from lung preparations were performed using a rate-of-lysis assay subsequent to acidification of the biological samples. Lysozyme released from bronchial preparations into fluids was greater than that observed for parenchymal tissues. The lysozyme quantities detected in bronchial fluids were not modified by removal of the surface epithelium. Furthermore, the quantities of lysozyme in bronchial fluids was correlated with the size of the bronchial preparations. These results suggest that the lysozyme was principally secreted by the human bronchi (submucosal layer) rather than by parenchyma tissues and that a greater release was observed in the proximal airways

    MUC5AC mucin release from human airways in vitro: effects of indomethacin and Bay X1005.

    Get PDF
    BACKGROUND: Increased secretion of mucus is a hallmark of many respiratory diseases and contributes significantly to the airflow limitation experienced by many patients. While the current pharmacological approach to reducing mucus and sputum production in patients is limited, clinical studies have suggested that drugs which inhibit the cyclooxygenase and/or 5-lipoxygenase enzymatic pathways may reduce secretory activity in patients with airway disease. AIM: This study was performed to investigate the effects of indomethacin (cyclooxygenase inhibitor) and Bay x 1005 (5-lipoxygenase inhibitor) on MUC5AC release from human airways in vitro. METHODS: An immunoradiometric assay was used to determine the quantities of MUC5AC present in the biological fluids derived from human airways in vitro. The measurements were made with a mixture of eight monoclonal antibodies (MAbs; PM8) of which the 21 M1 MAb recognized a recombinant M1 mucin partially encoded by the MUC5AC gene. RESULTS: The quantities of MUC5AC detected in the biological fluids derived from human bronchial preparations were not modified after treatment with indomethacin (cyclooxygenase inhibitor) and/or an inhibitor of the 5-lipoxygenase metabolic pathway (BAY x 1005). CONCLUSION: These results suggest that the cyclooxygenase and 5-lipoxygenase metabolic pathways play little or no role in the release of MUC5AC from human airways

    Pulmonary hypertension in infants with congenital heart defects: are leukotrienes involved?

    Get PDF
    The circulating levels of leukotriene E4 in infants with congenital heart defects, increased pulmonary blood flow and pulmonary arterial hypertension, were determined and compared with infants with decreased pulmonary blood flow (Tetralogy of Fallot). There was no correlation (r=0.38) between the pulmonary arterial pressure (56 ± 4 mmHg) and the leukotriene E4 levels (1.37 ± 0.67 ng/ml blood) measured in peripheral blood samples from the hypertensive group prior to surgery. There was considerable variation in the detectable leukotriene E4 levels in blood samples from different patients. The levels detected in the blood samples between the two groups of patients was similar. These data suggest that neither the surgical repair during cardiopulmonary bypass nor the pulmonary hypertension appeared to modify the leukotriene E4 blood levels in the small number of patients studied
    corecore