145,371 research outputs found

    Effects of disorder on conductance through small interacting systems

    Full text link
    We study the effects of disorders on the transport through small interacting systems based on a two-dimensional Hubbard cluster of finite size connected to two noninteracting leads. This system can be regarded as a model for the superlattice of quantum dots or atomic network of the nanometer size. We calculate the conductance at T=0 using the order U2U^2 self-energy in an electron-hole symmetric case. The results show that the conductance is ensitive to the randomness when the resonance states are situated near the Fermi energy.Comment: 2 pages, 3 figures, to be published in Physica E, proceedings Low Temperature Physics 23 (Hirosima, Japan

    Transport through a single Anderson impurity coupled to one normal and two superconducting leads

    Full text link
    We study the interplay between the Kondo and Andreev-Josephson effects in a quantum dot coupled to one normal and two superconducting (SC) leads. In the large gap limit, the low-energy states of this system can be described exactly by a local Fermi liquid for the interacting Bogoliubov particles. The phase shift and the renormalized parameters for the Bogoliubov particles vary depending on the Josephson phase between the two SC leads. We explore the precise features of a crossover that occurs between the Kondo singlet and local Cooper-pairing states as the Josephson phase varies, using the numerical renormalization group approach.Comment: 4 pages, 4 figures, contribution to SCES 201

    Homogeneous SPC/E water nucleation in large molecular dynamics simulations

    Get PDF
    We perform direct large molecular dynamics simulations of homogeneous SPC/E water nucleation, using up to 4106\sim 4\cdot 10^6 molecules. Our large system sizes allow us to measure extremely low and accurate nucleation rates, down to 1019cm3s1\sim 10^{19}\,\textrm{cm}^{-3}\textrm{s}^{-1}, helping close the gap between experimentally measured rates 1017cm3s1\sim 10^{17}\,\textrm{cm}^{-3}\textrm{s}^{-1}. We are also able to precisely measure size distributions, sticking efficiencies, cluster temperatures, and cluster internal densities. We introduce a new functional form to implement the Yasuoka-Matsumoto nucleation rate measurement technique (threshold method). Comparison to nucleation models shows that classical nucleation theory over-estimates nucleation rates by a few orders of magnitude. The semi-phenomenological nucleation model does better, under-predicting rates by at worst, a factor of 24. Unlike what has been observed in Lennard-Jones simulations, post-critical clusters have temperatures consistent with the run average temperature. Also, we observe that post-critical clusters have densities very slightly higher, 5%\sim 5\%, than bulk liquid. We re-calibrate a Hale-type JJ vs. SS scaling relation using both experimental and simulation data, finding remarkable consistency in over 3030 orders of magnitude in the nucleation rate range, and 180180\,K in the temperature range.Comment: Accepted for publication in the Journal of Chemical Physic

    Abundance theorem for semi log canonical surfaces in positive characteristic

    Get PDF
    We prove the abundance theorem for semi log canonical surfaces in positive characteristic.Comment: 33 pages. v2: I added Section 3, changed the definition of slc surfaces, and adopted the one of Kollar. v3: minor change
    corecore