5,009 research outputs found

    Convergence of an infinite dimensional stochastic process to a spatially structured trait substitution sequence

    Full text link
    We consider an individual-based spatially structured population for Darwinian evolution in an asexual population. The individuals move randomly on a bounded continuous space according to a reflected brownian motion. The dynamics involves also a birth rate, a density-dependent logistic death rate and a probability of mutation at each birth event. We study the convergence of the microscopic process when the population size grows to +∞+\infty and the mutation probability decreases to 00. We prove a convergence towards a jump process that jumps in the infinite dimensional space of the stable spatial distributions. The proof requires specific studies of the microscopic model. First, we examine the large deviation principle around the deterministic large population limit of the microscopic process. Then, we find a lower bound on the exit time of a neighborhood of a stationary spatial distribution. Finally, we study the extinction time of the branching diffusion processes that approximate small size populations

    Musical gestures and embodied cognition

    Get PDF
    In this keynote, musical gestures will be discussed in relation to the basic concepts of the embodied music cognition paradigm. Video examples are given of stud- ies and applications that are based on these concepts.

    Alignment strategies for the entrainment of music and movement rhythms

    Get PDF
    Theories of entrainment assume that spontaneous entrainment emerges from dynamic laws that operate via mediators on interactions, whereby entrainment is facilitated if certain conditions are fulfilled. In this study, we show that mediators can be built that affect the entrainment of human locomotion to music. More specifically, we built D-Jogger, a music player that functions as a mediator between music and locomotion rhythms. The D-Jogger makes it possible to manipulate the timing differences between salient moments of the rhythms (beats and footfalls) through the manipulation of the musical period and phase, which affect the condition in which entrainment functions. We conducted several experiments to explore different strategies for manipulating the entrainment of locomotion and music. The results of these experiments showed that spontaneous entrainment can be manipulated, thereby suggesting different strategies on how to embark. The findings furthermore suggest a distinction among different modalities of entrainment: finding the beat (the most difficult part of entrainment), keeping the beat (easier, as a temporal scheme has been established), and being in phase (no entrainment is needed because the music is always adapted to the human rhythm). This study points to a new avenue of research on entrainment and opens new perspectives for the neuroscience of music

    Using fuzzy logic to handle the semantic descriptions of music in a content-based retrieval system

    Get PDF
    This paper explores the potential use of fuzzy logic for semantic music recommendation. We show that a set of affective/emotive, structural and kinaesthetic descriptors can be used to formulate a query which allows the retrieval of intended music. A semantic music recommendation system was built, based on an elaborate study of potential users and an analysis of the semantic descriptors that best characterize the user’s understanding of music. Significant relationships between expressive and structural semantic descriptions of music were found. Fuzzy logic was then applied to handle the quality ratings associated with the semantic descriptions. A working semantic music recommendation system was tested and evaluated. Real-world testing revealed high user satisfaction

    Panako: a scalable acoustic fingerprinting system handling time-scale and pitch modification

    Get PDF
    In this paper a scalable granular acoustic fingerprinting system robust against time and pitch scale modification is presented. The aim of acoustic fingerprinting is to identify identical, or recognize similar, audio fragments in a large set using condensed representations of audio signals, i.e. fingerprints. A robust fingerprinting system generates similar fingerprints for perceptually similar audio signals. The new system, presented here, handles a variety of distortions well. It is designed to be robust against pitch shifting, time stretching and tempo changes, while remaining scalable. After a query, the system returns the start time in the reference audio, and the amount of pitch shift and tempo change that has been applied. The design of the system that offers this unique combination of features is the main contribution of this research. The fingerprint itself consists of a combination of key points in a Constant-Q spectrogram. The system is evaluated on commodity hardware using a freely available reference database with fingerprints of over 30.000 songs. The results show that the system responds quickly and reliably on queries, while handling time and pitch scale modifications of up to ten percent
    • …
    corecore