17,968,791 research outputs found

    The assembly of massive galaxies from NIR observations of the Hubble Deep Field South

    Full text link
    We use a deep K(AB)<25 galaxy sample in the Hubble Deep Field South to trace the evolution of the cosmological stellar mass density from z~ 0.5 to z~3. We find clear evidence for a decrease of the average stellar mass density at high redshift, 2<z<3.2, that is 15^{+25}_{-5}% of the local value, two times higher than what observed in the Hubble Deep Field North. To take into account for the selection effects, we define a homogeneous subsample of galaxies with 10^{10}M_\odot \leq M_* \leq 10^{11}M_\odot: in this sample, the mass density at z>2 is 20^{+20}_{-5} % of the local value. In the mass--limited subsample at z>2, the fraction of passively fading galaxies is at most 25%, although they can contribute up to about 40% of the stellar mass density. On the other hand, star--forming galaxies at z>2 form stars with an average specific rate at least ~4 x10^{-10} yr−1^{-1}, 3 times higher than the z<~1 value. This implies that UV bright star--forming galaxies are substancial contributors to the rise of the stellar mass density with cosmic time. Although these results are globally consistent with Λ\Lambda--CDM scenarios, the present rendition of semi analytic models fails to match the stellar mass density produced by more massive galaxies present at z>2.Comment: Accepted for publication on ApJLetter

    The evolution of the galaxy luminosity function in the rest frame blue band up to z=3.5

    Full text link
    We present an estimate of the cosmological evolution of the field galaxy luminosity function (LF) in the rest frame 4400 Angstrom B -band up to redshift z=3.5. To this purpose, we use a composite sample of 1541 I--selected galaxies selected down to I_(AB)=27.2 and 138 galaxies selected down to K_(AB)=25 from ground-based and HST multicolor surveys, most notably the new deep JHK images in the Hubble Deep Field South (HDF-S) taken with the ISAAC instrument at the ESO-VLT telescope. About 21% of the sample has spectroscopic redshifts, and the remaining fraction well calibrated photometric redshifts. The resulting blue LF shows little density evolution at the faint end with respect to the local values, while at the bright end (M_B(AB)<-20) a brightening increasing with redshift is apparent with respect to the local LF. Hierarchical CDM models overpredict the number of faint galaxies by about a factor 3 at z=1. At the bright end the predicted LFs are in reasonable agreement only at low and intermediate redshifts (z=1), but fail to reproduce the pronounced brightening observed in the high redshift (z=2-3) LF. This brightening could mark the epoch where a major star formation activity is present in the galaxy evolution.Comment: 14 pages, 2 figures, Astrophysical Journal Letters, in pres

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya

    Get PDF
    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization

    Inclusive search for supersymmetry using razor variables in pp collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    The Darkside Awakens

    Get PDF
    The DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive Ar-39 compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of Ar-39 by a factor (1.4 +/- 0.2) x 10(3) relative to atmospheric argon. The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20 t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.71814th International Conference on Topics in Astroparticle and Underground Physics (TAUP)Sep 07-11, 2015Torino, ITAL

    Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The inclusive production cross sections for forward jets, as well for jets in dijet events with at least one jet emitted at central and the other at forward pseudorapidities, are measured in the range of transverse momenta pt = 35-150 GeV/c in proton-proton collisions at sqrt(s) = 7 TeV by the CMS experiment at the LHC. Forward jets are measured within pseudorapidities 3.2<|eta|<4.7, and central jets within the |eta|<2.8 range. The double differential cross sections with respect to pt and eta are compared to predictions from three approaches in perturbative quantum chromodynamics: (i) next-to-leading-order calculations obtained with and without matching to parton-shower Monte Carlo simulations, (ii) PYTHIA and HERWIG parton-shower event generators with different tunes of parameters, and (iii) CASCADE and HEJ models, including different non-collinear corrections to standard single-parton radiation. The single-jet inclusive forward jet spectrum is well described by all models, but not all predictions are consistent with the spectra observed for the forward-central dijet events.Comment: Submitted to the Journal of High Energy Physic

    Understanding Soft Errors in Uncore Components

    Full text link
    The effects of soft errors in processor cores have been widely studied. However, little has been published about soft errors in uncore components, such as memory subsystem and I/O controllers, of a System-on-a-Chip (SoC). In this work, we study how soft errors in uncore components affect system-level behaviors. We have created a new mixed-mode simulation platform that combines simulators at two different levels of abstraction, and achieves 20,000x speedup over RTL-only simulation. Using this platform, we present the first study of the system-level impact of soft errors inside various uncore components of a large-scale, multi-core SoC using the industrial-grade, open-source OpenSPARC T2 SoC design. Our results show that soft errors in uncore components can significantly impact system-level reliability. We also demonstrate that uncore soft errors can create major challenges for traditional system-level checkpoint recovery techniques. To overcome such recovery challenges, we present a new replay recovery technique for uncore components belonging to the memory subsystem. For the L2 cache controller and the DRAM controller components of OpenSPARC T2, our new technique reduces the probability that an application run fails to produce correct results due to soft errors by more than 100x with 3.32% and 6.09% chip-level area and power impact, respectively.Comment: to be published in Proceedings of the 52nd Annual Design Automation Conferenc
    • …
    corecore