University of Helsinki

Helsingin yliopiston digitaalinen arkisto
Not a member yet
    136399 research outputs found

    To Draft or Not to Draft?

    Get PDF

    Whole and its Parts : Micro Foundations of Macro Behaviour

    Get PDF

    The spoilage flora of vacuum-packaged, sodium nitrite or potassium nitrate treated, cold-smoked rainbow trout stored at 4°C or 8°C

    Get PDF
    http://www.elsevier.nl/locate/01681605The spoilage flora of vacuum-packaged, salted, cold-smoked rainbow trout fillets, with or without the addition of nitrate or nitrite, stored at 4°C and 8°C, was studied. Of 620 isolates, lactic acid bacteria were the major fraction (76%), predominating in all samples of spoiled product. However, the phenotypical tests used were insufficient to identify the lactic acid bacteria to the species level. Gram-positive, catalase-positive cocci, Gram-negative, oxidase-negative rods and Gram-negative, oxidase-positive rods were found in 6%, 16% and 2% of the samples, respectively. Of 39 Gram-positive, catalase-positive cocci, 29 were identified as staphylococci and 10 as micrococci. Eighty-five isolates were found to belong to the family Enterobacteriaceae, with 45 of those being Serratia plymuthica. Eleven isolates from the nitrate treated samples stored at 8°C were identified as Pseudomonas aeruginosa. The occurrence of P. aeruginosa and staphylococci in the nitrate-containing samples, stored at 8°C, may cause problems with respect to the safety of the product. The types of lactic acid and other bacteria in the spoilage flora were generally reduced by the addition of nitrate or nitrite to fillets

    The economic transport unit size in roundwood towing on Lake Iso-Saimaa [in eastern Finland].

    Get PDF

    Firm profitability and individual pay : Evidence from matched employer-employee data

    Get PDF

    The visual preferences for forest regeneration and field afforestation : four case studies in Finland

    Get PDF
    The overall aim of this dissertation was to study the public's preferences for forest regeneration fellings and field afforestations, as well as to find out the relations of these preferences to landscape management instructions, to ecological healthiness, and to the contemporary theories for predicting landscape preferences. This dissertation includes four case studies in Finland, each based on the visualization of management options and surveys. Guidelines for improving the visual quality of forest regeneration and field afforestation are given based on the case studies. The results show that forest regeneration can be connected to positive images and memories when the regeneration area is small and some time has passed since the felling. Preferences may not depend only on the management alternative itself but also on the viewing distance, viewing point, and the scene in which the management options are implemented. The current Finnish forest landscape management guidelines as well as the ecological healthiness of the studied options are to a large extent compatible with the public's preferences. However, there are some discrepancies. For example, the landscape management instructions as well as ecological hypotheses suggest that the retention trees need to be left in groups, whereas people usually prefer individually located retention trees to those trees in groups. Information and psycho-evolutionary theories provide some possible explanations for people's preferences for forest regeneration and field afforestation, but the results cannot be consistently explained by these theories. The preferences of the different stakeholder groups were very similar. However, the preference ratings of the groups that make their living from forest - forest owners and forest professionals - slightly differed from those of the others. These results provide support for the assumptions that preferences are largely consistent at least within one nation, but that knowledge and a reference group may also influence preferences.Väitöskirjassa tutkittiin ihmisten maisemapreferenssejä (maisemallisia arvostuksia) metsänuudistamishakkuiden ja pellonmetsitysten suhteen sekä analysoitiin näiden preferenssien yhteyksiä maisemanhoito-ohjeisiin, vaihtoehtojen ekologiseen terveyteen ja preferenssejä ennustaviin teorioihin. Väitöskirja sisältää neljä tapaustutkimusta, jotka perustuvat hoitovaihtoehtojen visualisointiin ja kyselytutkimuksiin. Tapaustutkimusten pohjalta annetaan ohjeita siitä, kuinka uudistushakkuiden ja pellonmetsitysten visuaalista laatua voidaan parantaa. Väitöskirjan tulokset osoittavat, että uudistamishakkuut voivat herättää myös myönteisiä mielikuvia ja muistoja, jos uudistusala on pieni ja hakkuun välittömät jäljet ovat jo peittyneet. Preferensseihin vaikuttaa hoitovaihtoehdon lisäksi mm. katseluetäisyys, katselupiste ja ympäristö, jossa vaihtoehto on toteutettu. Eri viiteryhmien (metsäammattilaiset, pääkaupunkiseudun asukkaat, ympäristönsuojelijat, tutkimusalueiden matkailijat, paikalliset asukkaat sekä metsänomistajat) maisemapreferenssit olivat hyvin samankaltaisia. Kuitenkin ne ryhmät, jotka saavat ainakin osan elannostaan metsästä - metsänomistajat ja metsäammattilaiset - pitivät metsänhakkuita esittävistä kuvista hieman enemmän kuin muut ryhmät. Nämä tulokset tukevat oletusta, että maisemapreferenssit ovat laajalti yhteneväisiä ainakin yhden kansan tai kulttuurin keskuudessa, vaikka myös viiteryhmä saattaa vaikuttaa preferensseihin jonkin verran. Nykyiset metsämaisemanhoito-ohjeet ovat pitkälti samankaltaisia tässä väitöskirjassa havaittujen maisemapreferenssien kanssa. Myöskään tutkittujen vaihtoehtoisten hoitotapojen ekologisen paremmuuden ja niihin kohdistuvien maisemallisten arvostusten välillä ei ollut suurta ristiriitaa. Kuitenkin joitakin eroavaisuuksia oli; esimerkiksi sekä maisemanhoito-ohjeiden että ekologisten hypoteesien mukaan säästöpuut tulisi jättää ryhmiin, kun taas ihmiset pitivät eniten yksittäin jätetyistä puista. Informaatiomalli ja psyko-evolutionaarinen teoria tarjoavat mahdollisia selityksiä uudistushakkuisiin ja pellonmetsitykseen kohdistuville preferensseille, vaikkakaan tutkimuksen tuloksia ei voida täysin selittää näillä teorioilla

    Multivariate Techniques for Identifying Diffractive Interactions at the LHC

    Get PDF
    31 pages, 14 figures, 11 tablesClose to one half of the LHC events are expected to be due to elastic or inelastic diffractive scattering. Still, predictions based on extrapolations of experimental data at lower energies differ by large factors in estimating the relative rate of diffractive event categories at the LHC energies. By identifying diffractive events, detailed studies on proton structure can be carried out. The combined forward physics objects: rapidity gaps, forward multiplicity and transverse energy flows can be used to efficiently classify proton-proton collisions. Data samples recorded by the forward detectors, with a simple extension, will allow first estimates of the single diffractive (SD), double diffractive (DD), central diffractive (CD), and non-diffractive (ND) cross sections. The approach, which uses the measurement of inelastic activity in forward and central detector systems, is complementary to the detection and measurement of leading beam-like protons. In this investigation, three different multivariate analysis approaches are assessed in classifying forward physics processes at the LHC. It is shown that with gene expression programming, neural networks and support vector machines, diffraction can be efficiently identified within a large sample of simulated proton-proton scattering events. The event characteristics are visualized by using the self-organizing map algorithm.Peer reviewe

    Dissecting VEGFR-2 and VEGFR-3 function : VEGFR-3 mediates lymphangiogenic signals

    Get PDF

    97,774

    full texts

    131,224

    metadata records
    Updated in last 30 days.
    Helsingin yliopiston digitaalinen arkisto is based in FI
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇