2,000 research outputs found

    Experimental results and analysis from the 11 T Nb3Sn DS dipole

    Full text link
    FNAL and CERN are developing a 5.5-m-long twin-aperture Nb3Sn dipole suitable for installation in the LHC. A 2-m-long single-aperture demonstrator dipole with 60 mm bore, a nominal field of 11 T at the LHC nominal current of 11.85 kA and 20% margin has been developed and tested. This paper presents the results of quench protection analysis and protection heater study for the Nb3Sn demonstrator dipole. Extrapolations of the results for long magnet and operation in LHC are also presented.Comment: 10 pages, Contribution to WAMSDO 2013: Workshop on Accelerator Magnet, Superconductor, Design and Optimization; 15 - 16 Jan 2013, CERN, Geneva, Switzerlan

    Modeling heat transfer from quench protection heaters to superconducting cables in Nb3Sn magnets

    Full text link
    We use a recently developed quench protection heater modeling tool for an analysis of heater delays in superconducting high-field Nb3Sn accelerator magnets. The results suggest that the calculated delays are consistent with experimental data, and show how the heater delay depends on the main heater design parameters.Comment: 8 pages, Contribution to WAMSDO 2013: Workshop on Accelerator Magnet, Superconductor, Design and Optimization; 15 - 16 Jan 2013, CERN, Geneva, Switzerlan

    A New Scintillator Tile/Fiber Preshower Detector for the CDF Central Calorimeter

    Full text link
    A detector designed to measure early particle showers has been installed in front of the central CDF calorimeter at the Tevatron. This new preshower detector is based on scintillator tiles coupled to wavelength-shifting fibers read out by multi-anode photomultipliers and has a total of 3,072 readout channels. The replacement of the old gas detector was required due to an expected increase in instantaneous luminosity of the Tevatron collider in the next few years. Calorimeter coverage, jet energy resolution, and electron and photon identification are among the expected improvements. The final detector design, together with the R&D studies that led to the choice of scintillator and fiber, mechanical assembly, and quality control are presented. The detector was installed in the fall 2004 Tevatron shutdown and started collecting colliding beam data by the end of the same year. First measurements indicate a light yield of 12 photoelectrons/MIP, a more than two-fold increase over the design goals.Comment: 5 pages, 10 figures (changes are minor; this is the final version published in IEEE-Trans.Nucl.Sci.

    Designing a Magnetic Measurement Data Acquisition and Control System with Reuse in Mind: A Rotating Coil System Example

    Full text link
    Accelerator magnet test facilities frequently need to measure different magnets on differently equipped test stands and with different instrumentation. Designing a modular and highly reusable system that combines flexibility built-in at the architectural level as well as on the component level addresses this need. Specification of the backbone of the system, with the interfaces and dataflow for software components and core hardware modules, serves as a basis for building such a system. The design process and implementation of an extensible magnetic measurement data acquisition and control system are described, including techniques for maximizing the reuse of software. The discussion is supported by showing the application of this methodology to constructing two dissimilar systems for rotating coil measurements, both based on the same architecture and sharing core hardware modules and many software components. The first system is for production testing 10 m long cryo-assemblies containing two MQXFA quadrupole magnets for the high-luminosity upgrade of the Large Hadron Collider and the second for testing IQC conventional quadrupole magnets in support of the accelerator system at Fermilab

    Insertion Magnets

    Full text link
    Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report. The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.Comment: 19 pages, Chapter 3 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Repor

    A Quench Detection and Monitoring System for Superconducting Magnets at Fermilab

    Full text link
    A quench detection system was developed for protecting and monitoring the superconducting solenoids for the Muon-to-Electron Conversion Experiment (Mu2e) at Fermilab. The quench system was designed for a high level of dependability and long-term continuous operation. It is based on three tiers: Tier-I, FPGA-based Digital Quench Detection (DQD); Tier-II, Analog Quench Detection (AQD); and Tier-3, the quench controls and data management system. The Tier-I and Tier-II are completely independent and fully redundant systems. The Tier-3 system is based on National Instruments (NI) C-RIO and provides the user interface for quench controls and data management. It is independent from Tiers I & II. The DQD provides both quench detection and quench characterization (monitoring) capability. Both DQD and AQD have built-in high voltage isolation and user programmable gains and attenuations. The DQD and AQD also includes user configured current dependent thresholding and validation times. A 1st article of the three-tier system was fully implemented on the new Fermilab magnet test stand for the HL-LHC Accelerator Up-grade Project (AUP). It successfully provided quench protection and monitoring (QPM) for a cold superconducting bus test in November 2020. The Mu2e quench detection design has since been implemented for production testing of the AUP magnets. A detailed description of the system along with results from the AUP superconducting bus test will be presented
    corecore