12,521 research outputs found

    Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction

    Full text link
    A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer could see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts and give the conditions under which its action is unitary.Comment: 12 pages, 3 figure

    The century of the incomplete revolution: searching for general relativistic quantum field theory

    Get PDF
    In fundamental physics, this has been the century of quantum mechanics and general relativity. It has also been the century of the long search for a conceptual framework capable of embracing the astonishing features of the world that have been revealed by these two ``first pieces of a conceptual revolution''. I discuss the general requirements on the mathematics and some specific developments towards the construction of such a framework. Examples of covariant constructions of (simple) generally relativistic quantum field theories have been obtained as topological quantum field theories, in nonperturbative zero-dimensional string theory and its higher dimensional generalizations, and as spin foam models. A canonical construction of a general relativistic quantum field theory is provided by loop quantum gravity. Remarkably, all these diverse approaches have turn out to be related, suggesting an intriguing general picture of general relativistic quantum physics.Comment: To appear in the Journal of Mathematical Physics 2000 Special Issu

    Spin Networks and Recoupling in Loop Quantum Gravity

    Get PDF
    I discuss the role played by the spin-network basis and recoupling theory (in its graphical tangle-theoretic formulation) and their use for performing explicit calculations in loop quantum gravity. In particular, I show that recoupling theory allows the derivation of explicit expressions for the eingenvalues of the quantum volume operator. An important side result of these computations is the determination of a scalar product with respect to which area and volume operators are symmetric, and the spin network states are orthonormal.Comment: 8 pages, LaTeX3e, To appear in the Proceedings of the 2nd Conference on Constrained Dynamics and Quantum Gravity, Santa Margherita, Italy, 17-21 September 199

    A simple background-independent hamiltonian quantum model

    Full text link
    We study formulation and probabilistic interpretation of a simple general-relativistic hamiltonian quantum system. The system has no unitary evolution in background time. The quantum theory yields transition probabilities between measurable quantities (partial observables). These converge to the classical predictions in the 0\hbar\to 0 limit. Our main tool is the kernel of the projector on the solutions of Wheeler-deWitt equation, which we analyze in detail. It is a real quantity, which can be seen as a propagator that propagates "forward" as well as "backward" in a local parameter time. Individual quantum states, on the other hand, may contain only "forward propagating" components. The analysis sheds some light on the interpretation of background independent transition amplitudes in quantum gravity

    Discreteness of area and volume in quantum gravity

    Get PDF
    We study the operator that corresponds to the measurement of volume, in non-perturbative quantum gravity, and we compute its spectrum. The operator is constructed in the loop representation, via a regularization procedure; it is finite, background independent, and diffeomorphism-invariant, and therefore well defined on the space of diffeomorphism invariant states (knot states). We find that the spectrum of the volume of any physical region is discrete. A family of eigenstates are in one to one correspondence with the spin networks, which were introduced by Penrose in a different context. We compute the corresponding component of the spectrum, and exhibit the eigenvalues explicitly. The other eigenstates are related to a generalization of the spin networks, and their eigenvalues can be computed by diagonalizing finite dimensional matrices. Furthermore, we show that the eigenstates of the volume diagonalize also the area operator. We argue that the spectra of volume and area determined here can be considered as predictions of the loop-representation formulation of quantum gravity on the outcomes of (hypothetical) Planck-scale sensitive measurements of the geometry of space.Comment: 36 pages, latex, 13 figures uuencode

    Graviton propagator from background-independent quantum gravity

    Full text link
    We study the graviton propagator in euclidean loop quantum gravity, using the spinfoam formalism. We use boundary-amplitude and group-field-theory techniques, and compute one component of the propagator to first order, under a number of approximations, obtaining the correct spacetime dependence. In the large distance limit, the only term of the vertex amplitude that contributes is the exponential of the Regge action: the other terms, that have raised doubts on the physical viability of the model, are suppressed by the phase of the vacuum state, which is determined by the extrinsic geometry of the boundary.Comment: 6 pages. Substantially revised second version. Improved boundary state ansat

    Unitary dynamics of spherical null gravitating shells

    Full text link
    The dynamics of a thin spherically symmetric shell of zero-rest-mass matter in its own gravitational field is studied. A form of action principle is used that enables the reformulation of the dynamics as motion on a fixed background manifold. A self-adjoint extension of the Hamiltonian is obtained via the group quantization method. Operators of position and of direction of motion are constructed. The shell is shown to avoid the singularity, to bounce and to re-expand to that asymptotic region from which it contracted; the dynamics is, therefore, truly unitary. If a wave packet is sufficiently narrow and/or energetic then an essential part of it can be concentrated under its Schwarzschild radius near the bounce point but no black hole forms. The quantum Schwarzschild horizon is a linear combination of a black and white hole apparent horizons rather than an event horizon.Comment: 26 pages, Latex, no figures; definitive version, to be published in Nuclear Physics

    A spin foam model without bubble divergences

    Full text link
    We present a spin foam model in which the fundamental ``bubble amplitudes'' (the analog of the one-loop corrections in quantum field theory) are finite as the cutoff is removed. The model is a natural variant of the field theoretical formulation of the Barrett-Crane model. As the last, the model is a quantum BF theory plus an implementation of the constraint that reduces BF theory to general relativity. We prove that the fundamental bubble amplitudes are finite by constructing an upper bound, using certain inequalities satisfied by the Wigner (3n)j-symbols, which we derive in the paper. Finally, we present arguments in support of the conjecture that the bubble diagrams of the model are finite at all orders.Comment: 19 page
    corecore