6,120 research outputs found

    Construction and Verification of Performance and Reliability Models

    Get PDF
    Over the last two decades formal methods have been extended towards performance and reliability evaluation. This paper tries to provide a rather intuitive explanation of the basic concepts and features in this area. Instead of striving for mathematical rigour, the intention is to give an illustrative introduction to the basics of stochastic models, to stochastic modelling using process algebra, and to model checking as a technique to analyse stochastic models

    Dependability checking with StoCharts: Is train radio reliable enough for trains?

    Get PDF
    Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design

    Conformal field theory construction for nonabelian hierarchy wave functions

    Full text link
    The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular nonabelian ones. Here we analyze a class of nonabelian fractional quantum Hall model states which are generalizations of the abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey nonabelian fusion rules of type su(q)_k. For a subset of these states we are able to derive the conformal field theory description that makes the topological properties - in particular braiding - of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.Comment: extended introduction, added reference

    Renyi entropies for classical stringnet models

    Full text link
    In quantum mechanics, stringnet condensed states - a family of prototypical states exhibiting non-trivial topological order - can be classified via their long-range entanglement properties, in particular topological corrections to the prevalent area law of the entanglement entropy. Here we consider classical analogs of such stringnet models whose partition function is given by an equal-weight superposition of classical stringnet configurations. Our analysis of the Shannon and Renyi entropies for a bipartition of a given system reveals that the prevalent volume law for these classical entropies is augmented by subleading topological corrections that are intimately linked to the anyonic theories underlying the construction of the classical models. We determine the universal values of these topological corrections for a number of underlying anyonic theories including su(2)_k, su(N)_1, and su(N)_2 theories

    Quantum spin liquid with a Majorana Fermi surface on the three-dimensional hyperoctagon lattice

    Full text link
    Motivated by the recent synthesis of Ī²\beta-Li2_2IrO3_3 -- a spin-orbit entangled j=1/2j=1/2 Mott insulator with a three-dimensional lattice structure of the Ir4+^{4+} ions -- we consider generalizations of the Kitaev model believed to capture some of the microscopic interactions between the Iridium moments on various trivalent lattice structures in three spatial dimensions. Of particular interest is the so-called hyperoctagon lattice -- the premedial lattice of the hyperkagome lattice, for which the ground state is a gapless quantum spin liquid where the gapless Majorana modes form an extended two-dimensional Majorana Fermi surface. We demonstrate that this Majorana Fermi surface is inherently protected by lattice symmetries and discuss possible instabilities. We thus provide the first example of an analytically tractable microscopic model of interacting SU(2) spin-1/2 degrees of freedom in three spatial dimensions that harbors a spin liquid with a two-dimensional spinon Fermi surface
    • ā€¦
    corecore