10,173 research outputs found

    Calibration of Polarization Fields and Electro-Optical Response of Group-III Nitride Based c-Plane Quantum-Well Heterostructures by Application of Electro-Modulation Techniques

    Get PDF
    The polarization fields and electro-optical response of PIN-diodes based on nearly lattice-matched InGaN/GaN and InAlN/GaN double heterostructure quantum wells grown on (0001) sapphire substrates by metalorganic vapor phase epitaxy were experimentally quantified. Dependent on the indium content and the applied voltage, an intense near ultra-violet emission was observed from GaN (with fundamental energy gap Eg = 3.4 eV) in the electroluminescence (EL) spectra of the InGaN/GaN and InAlN/GaN PIN-diodes. In addition, in the electroreflectance (ER) spectra of the GaN barrier structure of InAlN/GaN diodes, the three valence-split bands, Γ9, Γ7+, and Γ7−, could selectively be excited by varying the applied AC voltage, which opens new possibilities for the fine adjustment of UV emission components in deep well/shallow barrier DHS. The internal polarization field Epol = 5.4 ± 1.6 MV/cm extracted from the ER spectra of the In0.21Al0.79N/GaN DHS is in excellent agreement with the literature value of capacitance-voltage measurements (CVM) Epol = 5.1 ± 0.8 MV/cm. The strength and direction of the polarization field Epol = −2.3 ± 0.3 MV/cm of the (0001) In0.055Ga0.945N/GaN DHS determined, under flat-barrier conditions, from the Franz-Keldysh oscillations (FKOs) of the electro-optically modulated field are also in agreement with the CVM results Epol = −1.2 ± 0.4 MV/cm. The (absolute) field strength is accordingly significantly higher than the Epol strength quantified in published literature by FKOs on a semipolar (112¯2) oriented In0.12Ga0.88N quantum well

    Thermodynamics of Asymptotically Locally AdS Spacetimes

    Full text link
    We formulate the variational problem for AdS gravity with Dirichlet boundary conditions and demonstrate that the covariant counterterms are necessary to make the variational problem well-posed. The holographic charges associated with asymptotic symmetries are then rederived via Noether's theorem and `covariant phase space' techniques. This allows us to prove the first law of black hole mechanics for general asymptotically locally AdS black hole spacetimes. We illustrate our discussion by computing the conserved charges and verifying the first law for the four dimensional Kerr-Newman-AdS and the five dimensional Kerr-AdS black holes.Comment: 55 pages; v2 one reference added, few signs corrected, version to appear in JHEP; v3 corrected minor typos and acknowledgement

    More Supersymmetric Standard-like Models from Intersecting D6-branes on Type IIA Orientifolds

    Full text link
    We present new classes of supersymmetric Standard-like models from type IIA \IT^6/(\IZ_2\times \IZ_2) orientifold with intersecting D6-branes. D6-branes can wrap general supersymmetric three-cycles of \IT^6=\IT^2\times \IT^2\times \IT^2, and any \IT^2 is allowed to be tilted. The models still suffer from additional exotics, however we obtained solutions with fewer Higgs doublets, as well as models with all three families of left-handed quarks and leptons arising from the same intersecting sector, and examples of a genuine left-right symmetric model with three copies of left-handed and right-handed families of quarks and leptons.Comment: 16 pages, REVTEX

    Riccati equations for holographic 2-point functions

    Get PDF
    Any second order homogeneous linear ordinary differential equation can be transformed into a first order non-linear Riccati equation. We argue that the Riccati form of the linearized fluctuation equations that determine the holographic 2-point functions simplifies considerably the numerical computation of such 2-point functions and of the corresponding transport coefficients by computing directly the response functions, eliminating the arbitrary source from the start. Moreover, it provides a neat criterion for the infrared regularity of the fluctuations. In particular, it is shown that the infrared regularity conditions for scalar and tensor fluctuations coincide, and hence they are either both regular or both singular. We demonstrate our numerical recipe based on the Riccati equations by computing the holographic 2-point functions for the stress tensor and a scalar operator in a number of asymptotically anti de Sitter backgrounds of bottom up scalar-gravity models. Analytical results are obtained for the 2-point function of the transverse traceless part of the stress tensor in two confining geometries, including a geometry that belongs to the class of IHQCD. We find that in this background the spin-2 spectrum is linear and, as expected, the position space 2-point function decays exponentially at large distances at a rate proportional to the confinement scale.Comment: 33 pages, 5 figures, 2 appendices. Changes with respect to V1: major extension of the numerical and analytical analysis. Added lemma 5.1, appendices A and B and references. Corrected typo
    • …
    corecore