4,074 research outputs found

    Formalism for dilepton production via virtual photon bremsstrahlung in hadronic reactions

    Get PDF
    We derive a set of new formulas for various distributions in dilepton production via virtual photon bremsstrahlung from pseudoscalar mesons and unpolarized spin-one-half fermions. These formulas correspond to the leading and sub-leading terms in the Low-Burnett-Kroll expansion for real photon bremsstrahlung. The relation of our leading-term formulas to previous works is also shown. Existing formulas are examined in the light of Lorentz covariance and gauge invariance. Numerical comparison is made in a simple example, where an "exact" formula and real photon data exist. The results reveal large discrepancies among different bremsstrahlung formulas. Of all the leading-term bremsstrahlung formulas, the one derived in this work agrees best with the exact formula. The issues of M_T-scaling and event generators are also addressed.Comment: 37 pages, RevTeX, epsf.sty, 10 embedded figure

    Soft Photons in Hadron-Hadron Collisions: Synchrotron Radiation from the QCD Vacuum?

    Get PDF
    We discuss the production of soft photons in high energy hadron-hadron collisions. We present a model where quarks and antiquarks in the hadrons emit ``synchrotron light'' when being deflected by the chromomagnetic fields of the QCD vacuum, which we assume to have a nonperturbative structure. This gives a source of prompt soft photons with frequencies ω<=300MeV\omega <= 300 MeV in the c.m. system of the collision in addition to hadronic bremsstrahlung. In comparing the frequency spectrum and rate of ``synchrotron'' photons to experimental results we find some supporting evidence for their existence. We make an exclusive--inclusive connection argument to deduce from the ``synchrotron'' effect a behaviour of the neutron electric formfactor GEn(Q2)G_E^n(Q^2) proportional to (Q2)1/6(Q^2)^{1/6} for Q2<20fm2Q^2 < 20 fm^{-2}. We find this to be consistent with available data. In our view, soft photon production in high energy hadron-hadron and lepton-hadron collisions as well as the behaviour of electromagnetic hadron formfactors for low Q2Q^2 are thus sensitive probes of the nonperturbative structure of the QCD vacuum.Comment: Heidelberg preprint HD-THEP-94-36, 31 pages, LaTeX + ZJCITE.sty (included), 12 figures appended as uuencoded compressed ps-fil

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-

    Observation of Hadronic W Decays in t-tbar Events with the Collider Detector at Fermilab

    Full text link
    We observe hadronic W decays in t-tbar -> W (-> l nu) + >= 4 jet events using a 109 pb-1 data sample of p-pbar collisions at sqrt{s} = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). A peak in the dijet invariant mass distribution is obtained that is consistent with W decay and inconsistent with the background prediction by 3.3 standard deviations. From this peak we measure the W mass to be 77.2 +- 4.6 (stat+syst) GeV/c^2. This result demonstrates the presence of two W bosons in t-tbar candidates in the W (-> l nu) + >= 4 jet channel.Comment: 20 pages, 4 figures, submitted to PR

    Search for Chargino-Neutralino Associated Production at the Fermilab Tevatron Collider

    Full text link
    We have searched in ppˉp \bar{p} collisions at s\sqrt{s} = 1.8 TeV for events with three charged leptons and missing transverse energy. In the Minimal Supersymmetric Standard Model, we expect trilepton events from chargino-neutralino (\chione \chitwo) pair production, with subsequent decay into leptons. We observe no candidate e+ee±e^+e^-e^\pm, e+eμ±e^+e^-\mu^\pm, e±μ+μe^\pm\mu^+\mu^- or μ+μμ±\mu^+\mu^-\mu^\pm events in 106 pb1^{-1} integrated luminosity. We present limits on the sum of the branching ratios times cross section for the four channels: \sigma_{\chione\chitwo}\cdot BR(\chione\chitwo\to 3\ell+X) 81.5 \mgev\sp and M_\chitwo > 82.2 \mgev\sp for tanβ=2\tan\beta=2, μ=600\mu =-600~\mgev\sp and M_\squark= M_\gluino.Comment: 9 pages and 3 figure

    Measurement of the lepton charge asymmetry in W-boson decays produced in p-pbar collisions

    Full text link
    We describe a measurement of the charge asymmetry of leptons from W boson decays in the rapidity range 0 enu, munu events from 110+/-7 pb^{-1}of data collected by the CDF detector during 1992-95. The asymmetry data constrain the ratio of d and u quark momentum distributions in the proton over the x range of 0.006 to 0.34 at Q2 \approx M_W^2. The asymmetry predictions that use parton distribution functions obtained from previously published CDF data in the central rapidity region (0.0<|y_l|<1.1) do not agree with the new data in the large rapidity region (|y_l|>1.1).Comment: 13 pages, 3 tables, 1 figur

    Search for New Particles Decaying to top-antitop in proton-antiproton collisions at squareroot(s)=1.8 TeV

    Get PDF
    We use 106 \ipb of data collected with the Collider Detector at Fermilab to search for narrow-width, vector particles decaying to a top and an anti-top quark. Model independent upper limits on the cross section for narrow, vector resonances decaying to \ttbar are presented. At the 95% confidence level, we exclude the existence of a leptophobic \zpr boson in a model of topcolor-assisted technicolor with mass M_{\zpr} << 480 \gev for natural width Γ\Gamma = 0.012 M_{\zpr}, and M_{\zpr} << 780 \gev for Γ\Gamma = 0.04 M_{\zpr}.Comment: The CDF Collaboration, submitted to PRL 25-Feb-200

    Search for Narrow Diphoton Resonances and for gamma-gamma+W/Z Signatures in p\bar p Collisions at sqrt(s)=1.8 TeV

    Get PDF
    We present results of searches for diphoton resonances produced both inclusively and also in association with a vector boson (W or Z) using 100 pb^{-1} of p\bar p collisions using the CDF detector. We set upper limits on the product of cross section times branching ratio for both p\bar p\to\gamma\gamma + X and p\bar p\to\gamma\gamma + W/Z. Comparing the inclusive production to the expectations from heavy sgoldstinos we derive limits on the supersymmetry-breaking scale sqrt{F} in the TeV range, depending on the sgoldstino mass and the choice of other parameters. Also, using a NLO prediction for the associated production of a Higgs boson with a W or Z boson, we set an upper limit on the branching ratio for H\to\gamma\gamma. Finally, we set a lower limit on the mass of a `bosophilic' Higgs boson (e.g. one which couples only to \gamma, W, and Z$ bosons with standard model couplings) of 82 GeV/c^2 at 95% confidence level.Comment: 30 pages, 11 figure

    Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags

    Full text link
    The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data sample was collected with the CDF detector at the Fermilab Tevatron collider during 1992 - 1995 by triggering on the existence of two lepton candidates in an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) = 1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the measured decay length and reconstructed momentum of the l- D*+ system. The charge of the lepton in the final state identifies the flavor of the anti-B0 meson at its decay. The second lepton in the event is used to infer the flavor of the anti-B0 meson at production. We measure the oscillation frequency to be Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
    corecore