1,345 research outputs found

    Dense ideals and cardinal arithmetic

    Full text link
    From large cardinals we show the consistency of normal, fine, κ\kappa-complete λ\lambda-dense ideals on Pκ(λ)\mathcal{P}_\kappa(\lambda) for successor κ\kappa. We explore the interplay between dense ideals, cardinal arithmetic, and squares, answering some open questions of Foreman

    Embeddings into outer models

    Full text link
    We explore the possibilities for elementary embeddings j:M→Nj : M \to N, where MM and NN are models of ZFC with the same ordinals, M⊆NM \subseteq N, and NN has access to large pieces of jj. We construct commuting systems of such maps between countable transitive models that are isomorphic to various canonical linear and partial orders, including the real line R\mathbb R

    Random function tracer Patent

    Get PDF
    Design and development of random function tracer for obtaining coordinates of points on contour map

    A Computational Analysis of Marine Fenders Under Heavy Weather Mooring Conditions

    Get PDF
    Dynamic loading of marine fenders is a situation that is unique to the United States Navy (USN), due to the use of Heavy Weather Mooring (HWM) for naval vessels during extreme weather events, such as hurricanes. Traditional analysis has not been concerned with the fender reaction on vessel hulls. However, newer classes of Naval ships, such as the Littoral Combat Ships (LCS), have designs that emphasize speed and agility, resulting in them having thinner hulls more susceptible to damage from fenders. In traditional analysis, fenders are modeled as idealized springs, with static- load derived spring constants from manufacturer charts. This has been adequate for previous warships, however with more susceptible warships, a better understanding of the fenders reaction is required. Two series of tests were created, a quasi-static testing series to mimic the current testing of fenders, and a cyclic testing series to determine if repeated loading of fenders would provoke a dynamic response. Testing was conducting using a Finite Element Analysis (FEA) model to simulate ship impacts on fenders and determine the fender reaction to both quasi-static and cyclic loading patterns at various ship velocities and loading periods. This research found that there was no impact on fender response provoked by a difference in loading speed during quasi-static testing. Cyclic loading of the fender did not provoke a dynamic fender response even under a second wave cycle where impact forcing could have caused different behavior. Overall, results of this study lead to the conclusions that both loading speed and loading pattern do not have an impact on fender response
    • …
    corecore