8,729 research outputs found

    CMS experiment at the LHC: Commissioning and early physics

    Full text link
    The CMS collaboration used the past year to greatly improve the level of detector readiness for the first collisions data. The acquired operational experience over this year, large gains in understanding the detector and improved preparedness for early physics will be instrumental in minimizing the time from the first collisions to first LHC physics. The following describes the status of the CMS experiment and outlines early physics plans with the first LHC data.Comment: To appear in the Proceedings of the 21st Rencontres de Blois: Windows on the Universe, Blois, France, 21-27 Jun 200

    Tensor form of magnetization damping

    Full text link
    A tensor form of phenomenological damping is derived for small magnetization motions. This form reflects basic physical relaxation processes for a general uniformly magnetized particle or film. Scalar Landau-Lifshitz damping is found to occur only for two special cases of system symmetry.Comment: Paper HA-03 presented at MMM'01, to be published in J. Appl. Phy

    Non-uniform thermal magnetization noise in thin films: application to GMR heads

    Full text link
    A general scheme is developed to analyze the effect of non-uniform thermal magnetization fluctuations in a thin film. The normal mode formalism is utilized to calculate random magnetization fluctuations. The magnetization noise is proportional to the temperature and inversely proportional to the film volume. The total noise power is the sum of normal mode spectral noises and mainly determined by spin-wave standing modes with an odd number of oscillations. The effect rapidly decreases with increasing mode number. An exact analytical calcutaion is presented for a two-cell model.Comment: Paper for MMM'01, CB-10, to be published in J. Appl. Phy

    Microscopic mechanisms of magnetization reversal

    Full text link
    Two principal scenarios of magnetization reversal are considered. In the first scenario all spins perform coherent motion and an excess of magnetic energy directly goes to a nonmagnetic thermal bath. A general dynamic equation is derived which includes a tensor damping term similar to the Bloch-Bloembergen form but the magnetization magnitude remains constant for any deviation from equilibrium. In the second reversal scenario, the absolute value of the averaged sample magnetization is decreased by a rapid excitation of nonlinear spin-wave resonances by uniform magnetization precession. We have developed an analytic k-space micromagnetic approach that describes this entire reversal process in an ultra-thin soft ferromagnetic film for up to 90^{o} deviation from equilibrium. Conditions for the occurrence of the two scenarios are discussed
    • …
    corecore