3,459 research outputs found

    Negative Magnetoresistance in Granular Bi - HTSC with Trapped Magnetic Fields

    Full text link
    Magnetoresistive properties of granular Bi-based HTSC with trapped magnetic fields are investigated in the temperature region near superconducting transition . The effect of trapped field and transport current values and orientations on the field dependence of magnetoresistance is studied. It is found that for the magnetic field parallel and the current perpendicular to trapping inducing field the field dependence of magnetoresistance is nonmonotonic and magnetoresistance turns out to be negative for small fields. The magnetoresistance sign inversion field increases roughly linear with the trapped magnetic field and slightly decrease with transport current. The results are explained in the framework of model of magnetic flux trapping in granules or superconducting loops embedded in weak links matrix.Comment: 5 pages, 4 figures, submitted to conference LT2

    On the emergence mechanism of lunar maria

    Get PDF
    Hypothetical emergence mechanism of lunar mari

    Parquet: Regions of areal plastic dislocations (on Venus)

    Get PDF
    The extensive flat elevations of the Northern Hemisphere of Venus are covered with frequently intersecting lines of dislocations, resembling the outline of a giant parquet. In the internal sections of these regions we find grabens and regions of extension, and on the periphery lobe-shaped flow structures. The parquet was formed after the beginning of the formation of the lava plains, but covered by the youngest lava. These structures apparently arose partly because of the dragging of blocks of crust by the asthenospheric flows, and partly in the gravitational sliding of such heated blocks in the partial melting of their base. It is possible that these elevations occupy on Venus the place of the Earth's rift systems
    corecore