5,086 research outputs found

    Who will win the ozone game? On building and sustaining cooperation in the Montreal protocoll on substances that deplete the ozone layer

    Get PDF
    This paper presents an analysis of the Montreal Protocol on Substances that Deplete the Ozone Layer. It advances the view that the Developing World did not exploit its relatively strong bargaining position in negotiations over sidepayments and that the concessional ten-year grace period for Jess developed countries is a cause of instability of the agreement. The paper derives conditions under which sidepayments and sanctions can produce stable cooperation. It applies basic non-cooperative game theory and the subgame perfect Nash equilibrium as solution concept and compares the non-cooperative outcome with the Nash bargaining solution of a hypothetical cooperative game.

    Real-valued feature selection for process approximation and prediction

    Get PDF
    The selection of features for classification, clustering and approximation is an important task in pattern recognition, data mining and soft computing. For real-valued features, this contribution shows how feature selection for a high number of features can be implemented using mutual in-formation. Especially, the common problem for mutual information computation of computing joint probabilities for many dimensions using only a few samples is treated by using the RĂšnyi mutual information of order two as computational base. For this, the Grassberger-Takens corre-lation integral is used which was developed for estimating probability densities in chaos theory. Additionally, an adaptive procedure for computing the hypercube size is introduced and for real world applications, the treatment of missing values is included. The computation procedure is accelerated by exploiting the ranking of the set of real feature values especially for the example of time series. As example, a small blackbox-glassbox example shows how the relevant features and their time lags are determined in the time series even if the input feature time series determine nonlinearly the output. A more realistic example from chemical industry shows that this enables a better ap-proximation of the input-output mapping than the best neural network approach developed for an international contest. By the computationally efficient implementation, mutual information becomes an attractive tool for feature selection even for a high number of real-valued features

    Renormalization of the EWCL and its Application to LEP2

    Full text link
    We perform a systematic one-loop renormalization on the electroweak chiral Lagrangian (EWCL) up to O(p4)O(p^4) operators and construct the renormalization group equations (RGE) for the anomalous couplings. We examine the impact of the triple gauge coupling (TGC) measurement from LEP2 to the uncertainty of the S−TS-T parameter at the Λ=1TeV\Lambda=1 TeV, and find that the uncertainty in the TGC measurements can shift S(Λ)S(\Lambda) at least 3.3σ3.3 \sigma.Comment: 4 pages, 1 eps figure, uses ws-ijmpa.cls. Paralell talk given at "International Conference on QCD and hadronic Physics", Beijing, China, 16-20 June, 200

    Raising the Higgs mass with Yukawa couplings for isotriplets in vector-like extensions of minimal supersymmetry

    Full text link
    Extra vector-like matter with both electroweak-singlet masses and large Yukawa couplings can significantly raise the lightest Higgs boson mass in supersymmetry through radiative corrections. I consider models of this type that involve a large Yukawa coupling between weak isotriplet and isodoublet chiral supermultiplets. The particle content can be completed to provide perturbative gauge coupling unification, in several different ways. The impact on precision electroweak observables is shown to be acceptably small, even if the new particles are as light as the current experimental bounds of order 100 GeV. I study the corrections to the lightest Higgs boson mass, and discuss the general features of the collider signatures for the new fermions in these models.Comment: 30 page

    On the strength of dependent products in the type theory of Martin-L\"of

    Full text link
    One may formulate the dependent product types of Martin-L\"of type theory either in terms of abstraction and application operators like those for the lambda-calculus; or in terms of introduction and elimination rules like those for the other constructors of type theory. It is known that the latter rules are at least as strong as the former: we show that they are in fact strictly stronger. We also show, in the presence of the identity types, that the elimination rule for dependent products--which is a "higher-order" inference rule in the sense of Schroeder-Heister--can be reformulated in a first-order manner. Finally, we consider the principle of function extensionality in type theory, which asserts that two elements of a dependent product type which are pointwise propositionally equal, are themselves propositionally equal. We demonstrate that the usual formulation of this principle fails to verify a number of very natural propositional equalities; and suggest an alternative formulation which rectifies this deficiency.Comment: 18 pages; v2: final journal versio
    • 

    corecore