4,419 research outputs found

    Fractional exclusion statistics applied to relativistic nuclear matter

    Full text link
    The effect of statistics of the quasiparticles in the nuclear matter at extreme conditions of density and temperature is evaluated in the relativistic mean-field model generalized to the framework of the fractional exclusion statistics (FES). In the model, the nucleons are described as quasiparticles obeying FES and the model parameters were chosen to reproduce the ground state properties of the isospin-symmetric nuclear matter. In this case, the statistics of the quasiparticles is related to the strengths of the nucleon-nucleon interaction mediated by the neutral scalar and vector meson fields. The relevant thermodynamic quantities were calculated as functions of the nucleons density, temperature and fractional exclusion statistics parameter α\alpha. It has been shown that at high temperatures and densities the thermodynamics of the system has a strong dependence on the statistics of the particles. The scenario in which the nucleon-nucleon interaction strength is independent of the statistics of particles was also calculated, but it leads in general to unstable thermodynamics.Comment: 17 pages, 7 figure

    Stochastic simulations for the time evolution of systems which obey generalized statistics: Fractional exclusion statistics and Gentile's statistics

    Full text link
    We present a stochastic method for the simulation of the time evolution in systems which obey generalized statistics, namely fractional exclusion statistics and Gentile's statistics. The transition rates are derived in the framework of canonical ensembles. This approach introduces a tool for describing interacting fermionic and bosonic systems in non-equilibrium as ideal FES systems, in a computationally efficient manner. The two types of statistics are analyzed comparatively, indicating their intrinsic thermodynamic differences and revealing key aspects related to the species size.Comment: 14 pages, 5 figures, IOP forma

    Canonical-grandcanonical ensemble in-equivalence in Fermi systems?

    Full text link
    I discuss the effects of fermionic condensation in systems of constant density of states. I show that the condensation leads to a correction of the chemical potential and of the Fermi distribution in canonical Fermi systems at low temperatures. This implies that the canonical and grandcanonical ensembles are not equivalent even for Fermi systems.Comment: 4 pages and 1 figur

    Fluctuations of the Fermi condensate in ideal gases

    Full text link
    We calculate numerically and analytically the fluctuations of the fermionic condensate and of the number of particles above the condensate for systems of constant density of states. We compare the canonical fluctuations, obtained from the equivalent Bose condensate fluctuation, with the grandcanonical fermionic calculation. The fluctuations of the condensate are almost the same in the two ensembles, with a small correction comming from the total particle number fluctuation in the grandcanonical ensemble. On the other hand the number of particles above the condensate and its fluctuation is insensitive to the choice of ensemble.Comment: 10 pages with 3 figs. IOP styl

    Anisotropic glass-like properties in tetragonal disordered crystals

    Full text link
    The low temperature acoustic and thermal properties of amorphous, glassy materials are remarkably similar. All these properties are described theoretically with reasonable quantitative accuracy by assuming that the amorphous solid contains dynamical defects that can be described at low temperatures as an ensemble of two-level systems (TLS), but the deep nature of these TLSs is not clarified yet. Moreover, glassy properties were found also in disordered crystals, quasicrystals, and even perfect crystals with a large number of atoms in the unit cell. In crystals, the glassy properties are not universal, like in amorphous materials, and also exhibit anisotropy. Recently it was proposed a model for the interaction of two-level systems with arbitrary strain fields (Phys. Rev. B 75, 64202, 2007), which was used to calculate the thermal properties of nanoscopic membranes at low temperatures. The model is also suitable for the description of anisotropic crystals. We describe here the results of the calculation of anisotropic glass-like properties in crystals of various lattice symmetries, emphasizing the tetragonal symmetry.Comment: 5 pages, no figure

    An ansatz for the exclusion statistics parameters in macroscopic physical systems described by fractional exclusion statistics

    Full text link
    I introduce an ansatz for the exclusion statistics parameters of fractional exclusion statistics (FES) systems and I apply it to calculate the statistical distribution of particles from both, bosonic and fermionic perspectives. Then, to check the applicability of the ansatz, I calculate the FES parameters in three well-known models: in a Fermi liquid type of system, a one-dimensional quantum systems described in the thermodynamic Bethe ansatz and quasiparticle excitations in the fractional quantum Hall (FQH) systems. The FES parameters of the first two models satisfy the ansatz, whereas those of the third model, although close to the form given by the ansatz, represent an exception. With this ocasion I also show that the general properties of the FES parameters, deduced elsewhere (EPL 87, 60009, 2009), are satisfied also by the parameters of the FQH liquid.Comment: 6 pages, EPL styl
    corecore