9 research outputs found

    Performance Optimization in UAV-Assisted Wireless Powered mmWave Networks for Emergency Communications

    No full text
    In this paper, we explore how a rotary-wing unmanned aerial vehicle (UAV) acts as an aerial millimeter wave (mmWave) base station to provide recharging service and radio access service in a postdisaster area with unknown user distribution. The addressed optimization problem is to find out the optimal path starting and ending at the same recharging point to cover a wider area under limited battery capacity, and it can be transformed to an extended multiarmed bandit (MAB) problem. We propose the two improved path planning algorithms to solve this optimization problem, which can improve the ability to explore the unknown user distribution. Simulation results show that, in terms of the total number of served user equipment (UE), the number of visited grids, the amount of data, the average throughput, and the battery capacity utilization level, one of our algorithms is superior to its corresponding comparison algorithm, while our other algorithm is superior to its corresponding comparison algorithm in terms of the number of visited grids

    Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis.

    No full text
    Multiple sclerosis (MS) frequently starts near the lateral ventricles, which are lined by subventricular zone (SVZ) progenitor cells that can migrate to lesions and contribute to repair. Because MS-induced inflammation may decrease SVZ proliferation and thus limit repair, we studied the role of galectin-3 (Gal-3), a proinflammatory protein. Gal-3 expression was increased in periventricular regions of human MS in post-mortem brain samples and was also upregulated in periventricular regions in a murine MS model, Theiler's murine encephalomyelitis virus (TMEV) infection. Whereas TMEV increased SVZ chemokine (CCL2, CCL5, CCL, and CXCL10) expression in wild type (WT) mice, this was inhibited in Gal-3(-/-) mice. Though numerous CD45+ immune cells entered the SVZ of WT mice after TMEV infection, their numbers were significantly diminished in Gal-3(-/-) mice. TMEV also reduced neuroblast and proliferative SVZ cell numbers in WT mice but this was restored in Gal-3(-/-) mice and was correlated with increased numbers of doublecortin+ neuroblasts in the corpus callosum. In summary, our data showed that loss of Gal-3 blocked chemokine increases after TMEV, reduced immune cell migration into the SVZ, reestablished SVZ proliferation and increased the number of progenitors in the corpus callosum. These results suggest Gal-3 plays a central role in modulating the SVZ neurogenic niche's response to this model of MS. GLIA 2015

    Hyperspectral imaging in crop fields:precision agriculture

    No full text
    Precision agriculture is starting to play a key role in the new generation of modern agricultural revolution. Farmers are increasingly aware of the importance of maintaining direct control of several fundamental aspects such as the state of health of crops, the amount of water or fertilizer, and possible infections that can develop in the field. Hyperspectral imaging (HSI) and multispectral imaging (MSI) have been applied for these matters for some decades. Nevertheless, there are still several technological and practical barriers to face. This chapter provides an overview of some of the relevant scientific literature related to the application of HSI and MSI on crop fields. Some of the applications are related to the detection of contaminants and heavy metals, the control and assessment of water sources, and the detection of the health status of the fields. The main advantages and constraints and the methods to acquire the images (by using satellites or aerial vehicles) are also shown and discussed

    Non-invasive sensing for food reassurance

    No full text
    Consumers and governments are increasingly interested in the safety, authenticity and quality of food commodities. This has driven attention towards non-invasive sensing techniques used for rapid analyzing these commodities. This paper provides an overview of the state of the art in, and available alternatives for, food assurance based on non-invasive sensing techniques. The main food quality traits of interest using non-invasive sensing techniques are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of non-invasive sensing techniques, from optical, acoustical, electrical, to nuclear magnetic, x-ray, biosensor, microwave and terahertz, are organized according to physical principle. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed. With continued innovation and attention to key challenges, such non-invasive sensors and biosensors are expected to open up new exciting avenues in the field of portable and wearable wireless sensing devices and connecting with mobile networks, thus finding considerable use in a wide range of food assurance applications. The need for an appropriate regulatory framework is emphasized which acts to exclude unwanted components in foods and includes needed components, with sensors as part of a reassurance framework supporting regulation and food chain management. The integration of these sensor modalities into a single technological and commercial platform offers an opportunity for a paradigm shift in food reassurance

    One stop mycology

    No full text

    One stop mycology

    No full text
    corecore