6,288 research outputs found

    Characterization of fatigue crack initiation and propagation in Ti-6Al-4V with electrical potential drop technique

    Get PDF
    Electrical potential methods have been used in the past primarily to monitor crack length in long crack specimens subjected to fatigue loading. An attempt was made to develop test procedures for monitoring the fatigue crack initiation and the growth of short fatigue cracks in a turbine disk alloy with the electrical potential drop technique (EPDT). In addition, the EPDT was also applied to monitor the fatigue crack growth in long crack specimens of the same alloy. The resolution of the EPDT for different specimen geometries was determined. Factors influencing the EPDT are identified and the applicability of EPDT in implementing damage tolerant design concepts for turbine disk materials is discussed. The experimental procedure adopted and the results obtained is discussed. No substantial differences were observed between the fatigue crack growth data of short and long crack specimens

    Time dependency of strainrange partitioning life relationships

    Get PDF
    The effect of exposure time (or creep rate) on the CP life relationship is established by conducting isothermal CP tests at varying exposure times on 316 Ss at 1300 and 1500 F. A reduction in the CP cycle life is observed with an increase in the exposure time of the CP test at a given inelastic strain-range. This phenomenon is characterized by modifying the Manson-Coffin type of CP relationship. Two new life relationships: (1) the Steady State Creep Rate (SSRC) Modified CP life relationship, and (2) the Failure Time (FT) Modified CP life relationship, are developed in this report. They account for the effect of creep rate and exposure time within the CP type of waveform. The reduction in CP cyclic life in the long exposure time tests is attributed to oxidation and the precipitation of carbides along the grain boundaries

    Axial-torsional fatigue: A study of tubular specimen thickness effects

    Get PDF
    A room-temperature experimental program was conducted on AISI type 316 stainless steel to determine the effect of wall thickness on the cyclic deformation behavior and fatigue life of thin-wall, tubular, axial-torsional fatigue specimens. The following experimental variables were examined in this study: the depth of the surface work-hardened layer produced in specimen machining, and the effects of strain range and axial-torsional strain phasing. Tubular fatigue specimens were fabricated with wall thicknesses of 1.5, 2.0, and 2.5 mm. One as-fabricated specimen from each wall thickness was sectioned for microstructural examination and microhardness measurement. A specimen of each wall thickness was tested at each of three conditions - high strain range in-phase, low strain range in-phase, and low strain range out-of-phase - for a total of nine axial-torsional fatigue experiments. The machining-induced work-hardened zone, as a percentage of the gage section material, was found to have a minimal effect on both deformation behavior and fatigue life. Also, little or no variation in fatigue life or deformation behavior as a function of wall thickness was observed. Out-of-phase fatigue tests displayed shorter fatigue lives and more cyclic hardening than in-phase tests

    Fatigue behavior of a single-crystal superalloy

    Get PDF
    A single-crystal superalloy, PWA 1480 is under consideration as a replacement material for the turbine blades of the high pressure fuel turbopump (HPFTP) of the space shuttle main engine (SSME). Three separate experimental programs were conducted to characterize the fatigue behavior of this alloy. Fatigue tests were conducted at room temperature (in air) and at 1000 F (in vacuum) on smooth specimens machined from both cast bars and slabs. The data from all of these programs are consolidated to provide a broader characterization of the fatigue behavior of the single crystal PWA 1480. The zero-mean-stress fatigue relationships are expressed in terms of stress range versus cyclic life lines on log-log plots. Characterization of the fatigue behavior of (001) oriented PWA 1480 single crystal under conditions of tensile mean stress was performed by using the unified approach proposed by Heidmann. In this approach the fatigue life is modified by a mean stress parameter so that a single life relationship can be used to represent both zero and tensile mean stress data

    Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element structural analysis

    Get PDF
    The temperature-dependent engineering elastic constants of a directionally solidified nickel-base superalloy were estimated from the single-crystal elastic constants of nickel and MAR-MOO2 superalloy by using Wells' method. In this method, the directionally solidified (columnar-grained) nickel-base superalloy was modeled as a transversely isotropic material, and the five independent elastic constants of the transversely isotropic material were determined from the three independent elastic constants of a cubic single crystal. Solidification for both the single crystals and the directionally solidified superalloy was assumed to be along the (001) direction. Temperature-dependent Young's moduli in longitudinal and transverse directions, shear moduli, and Poisson's ratios were tabulated for the directionally solidified nickel-base superalloy. These engineering elastic constants could be used as input for performing finite element structural analysis of directionally solidified turbine engine components

    Axial and torsional fatigue behavior of a cobalt-base alloy

    Get PDF
    In order to develop elevated temperature multiaxial fatigue life prediction models for the wrought cobalt-base alloy, Haynes 188, a multiaxial fatigue data base is required. To satisfy this need, an elevated temperature experimental program on Haynes 188 consisting of axial, torsional, inphase and out of phase axial-torsional fatigue experiments was designed. Elevated temperature axial and torsional fatigue experiments were conducted under strain control on thin wall tubular specimens of Haynes 188 in air. Test results are given

    In-phase and out-of-phase axial-torsional fatigue behavior of Haynes 188 at 760 C

    Get PDF
    Isothermal, in-phase and out-of-phase axial-torsional fatigue experiments have been conducted at 760 C on uniform gage section, thin-walled tubular specimens of a wrought cobalt-base superalloy, Haynes 188. Test-control and data acquisition were accomplished with a minicomputer. Fatigue lives of the in- and out-of-phase axial-torsional fatigue tests have been estimated with four different multiaxial fatigue life prediction models that were developed primarly for predicting axial-torsional fatigue lives at room temperature. The models investigated were: (1) the von Mises equivalent strain range; (2) the Modified Multiaxiality Factor Approach; (3) the Modified Smith-Watson-Topper Parameter; and (4) the critical shear plane method of Fatemi, Socie, and Kurath. In general, life predictions by the von Mises equivalent strain range model were within a factor of 2 for a majority of the tests and the predictions by the Modified Multiaxiality Factor Approach were within a factor of 2, while predictions of the Modified Smith-Watson-Topper Parameter and of the critical shear plane method of Fatemi, Socie, and Kurath were unconservative and conservative, respectively, by up to factors of 4. In some of the specimens tested under combined axial-torsional loading conditions, fatigue cracks initiated near extensometer indentations. Two design modifications have been proposed to the thin-walled tubular specimen to overcome this problem

    Elevated temperature axial and torsional fatigue behavior of Haynes 188

    Get PDF
    The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed

    Damage mechanisms in bithermal and thermomechanical fatigue of Haynes 188

    Get PDF
    Post failure fractographic and metallographic studies were conducted on Haynes 188 specimens fatigued under bithermal and thermomechanical loading conditions between 316 and 760 C. Bithermal fatigue specimens examined included those tested under high strain rate in-phase and out-phase, tensile creep in-phase, and compressive creep out-of-phase loading conditions. Specimens tested under in-phase and out-of-phase thermomechanical fatigue were also examined. The nature of failure mode (transgrandular versus intergranular), the topography of the fracture surface, and the roles of oxidation and metallurgical changes were studied for each type of bithermal and thermomechanical test
    corecore