2,994 research outputs found

    Ciproxifan, an H~3~ Receptor Antagonist, Improves Learning and Memory in the APP Mouse Model of Alzheimer's Disease

    Get PDF
    Mice that express the mutant form of the human amyloid precursor gene associated with early-onset familial Alzheimer's disease demonstrate memory deficits and amyloid plaques. We show here that ciproxifan, a prototypical antagonist of H~3~-type histamine receptors, alleviates two types of learning and memory impairments in such mice. These data support the idea that modulation of H~3~ receptors represents a viable therapeutic strategy in the treatment of Alzheimer's disease

    The use of chronosequences in studies of ecological succession and soil development

    Get PDF
    1. Chronosequences and associated space-for-time substitutions are an important and often necessary tool for studying temporal dynamics of plant communities and soil development across multiple time-scales. However, they are often used inappropriately, leading to false conclusions about ecological patterns and processes, which has prompted recent strong criticism of the approach. Here, we evaluate when chronosequences may or may not be appropriate for studying community and ecosystem development. 2. Chronosequences are appropriate to study plant succession at decadal to millennial time-scales when there is evidence that sites of different ages are following the same trajectory. They can also be reliably used to study aspects of soil development that occur between temporally linked sites over time-scales of centuries to millennia, sometimes independently of their application to shorter-term plant and soil biological communities. 3. Some characteristics of changing plant and soil biological communities (e.g. species richness, plant cover, vegetation structure, soil organic matter accumulation) are more likely to be related in a predictable and temporally linear manner than are other characteristics (e.g. species composition and abundance) and are therefore more reliably studied using a chronosequence approach. 4. Chronosequences are most appropriate for studying communities that are following convergent successional trajectories and have low biodiversity, rapid species turnover and low frequency and severity of disturbance. Chronosequences are least suitable for studying successional trajectories that are divergent, species-rich, highly disturbed or arrested in time because then there are often major difficulties in determining temporal linkages between stages. 5. Synthesis. We conclude that, when successional trajectories exceed the life span of investigators and the experimental and observational studies that they perform, temporal change can be successfully explored through the judicious use of chronosequences

    NEURAL MECHANISMS OF SYMPATHETIC ACTIVATION DURING HYPERINSULINEMIA AND OBESITY-INDUCED HYPERTENSION

    Get PDF
    Obesity afflicts more than 30% of the U.S. population and is a major risk factor for the development of hypertension, type II diabetes, and cardiovascular disease. Studies in humans and animals indicate that obesity is associated with increased sympathetic outflow to the vasculature and kidneys. One mechanism postulated to underlie the increase in sympathetic nerve activity (SNA) in obesity is hyperinsulinemia. Little is known regarding the central circuitry underlying elevated SNA and arterial blood pressure (ABP) during hyperinsulinemia and obesity or if sympathoexcitatory circuits are still responsive to insulin in obesity. Hyperinsulinemic-euglycemic clamps elevate SNA to the hind limb vasculature in lean rodents but obesity is associated with resistance to the peripheral and anorexic effects of insulin. Therefore, the first aim was to determine whether diet-induced obesity causes development of insulin resistance in the central circuits mediating SNA. The sympathoexcitatory response to insulin was still intact in diet-induced obese rats indicating a role for insulin in the elevation in SNA and ABP in obesity. The second aim of this project was to identify the specific receptors in the rostral ventrolateral medulla (RVLM) that mediate the elevated SNA during hyperinsulinemia. The RVLM provides basal sympathetic tone and maintains baseline ABP. Glutamate is the major excitatory neurotransmitter and glutamate receptors of the RVLM are known to mediate multiple forms of hypertension. Blockade of RVLM NMDA-specific glutamatergic receptors reverses the increased lumbar SNA associated with hyperinsulinemia. In contrast, blockade of angiotensin II type 1 or melanocortin receptors in the RVLM had no effect on the sympathoexcitatory response to insulin. The goal of the third aim was to identify the cellular mechanisms within RVLM that mediate the elevated SNA and ABP in diet-induced obesity. Blockade of RVLM glutamate receptors reversed the elevated ABP and lumbar SNA associated with diet-induced obesity while it had no effect on rats on a low fat diet or those resistant to weight gain on the high fat diet. Similar to the findings during hyperinsulinemia, blockade of RVLM angiotensin II type 1 or melanocortin receptors had no effect on lumbar SNA or ABP during diet-induced obesity

    Integrating Below-Ground Ecology into Sustainable Grassland Management

    Get PDF
    Key points 1. Grasslands produce soils that sustain an abundant and diverse soil food web, providing tremendous opportunity for below-ground interactions to influence nutrient cycling processes and plant production. 2. Fast developing areas of ecological science offer scope to harness positive outcomes of below-ground ecology for enhancing efficient cycling of nutrients in sustainable grassland systems

    Linking vegetation change, carbon sequestration and biodiversity

    Get PDF
    1. Despite recent interest in linkages between above- and belowground communities and their consequences for ecosystem processes, much remains unknown about their responses to long-term ecosystem change. We synthesize multiple lines of evidence from a long-term ‘natural experiment’ to illustrate how ecosystem retrogression (the decline in ecosystem processes due to long-term absence of major disturbance) drives vegetation change, and thus aboveground and belowground carbon (C) sequestration, and communities of consumer biota. 2. Our study system involves 30 islands in Swedish boreal forest that form a 5000 year fire-driven retrogressive chronosequence. Here, retrogression leads to lower plant productivity and slower decomposition, and a community shift from plants with traits associated with resource acquisition to those linked with resource conservation. 3. We present consistent evidence that aboveground ecosystem C sequestration declines, while belowground and total C storage increases linearly for at least 5000 years following fire absence. This increase is driven primarily by changes in vegetation characteristics, impairment of decomposer organisms and absence of humus combustion. 4. Data from contrasting trophic groups show that during retrogression, biomass or abundance of plants and decomposer biota decreases, while that of aboveground invertebrates and birds increases, due to different organisms accessing resources via distinct energy channels. Meanwhile, diversity measures of vascular plants and aboveground (but not belowground) consumers respond positively to retrogression. 5. We show that taxonomic richness of plants and aboveground consumers are positively correlated with total ecosystem C storage, suggesting that conserving old growth forests simultaneously maximizes biodiversity and C sequestration. However, we find little observational or experimental evidence that plant diversity is a major driver of ecosystem C storage on the islands relative to other biotic and abiotic factors. 6. Synthesis. Our study reveals that across contrasting islands differing in exposure to a key extrinsic driver (historical disturbance regime and resulting retrogression), there are coordinated responses of soil fertility, vegetation, consumer communities, and ecosystem C sequestration, which all feed back to one another. It also highlights the value of well replicated natural experiments for tackling questions about aboveground-belowground linkages over temporal and spatial scales that are otherwise unachievable

    Drivers of inter-year variability of plant production and decomposers across contrasting island ecosystems

    Get PDF
    Despite the likely importance of inter-year dynamics of plant production and consumer biota for driving community- and ecosystem-level processes, very few studies have explored how and why these dynamics vary across contrasting ecosystems. We utilized a well characterized system of 30 lake islands in the boreal forest zone of northern Sweden across which soil fertility and productivity vary considerably, with larger islands being more fertile and productive than smaller ones. In this system we assessed the inter-year dynamics of several measures of plant production and the soil microbial community (primary consumers in the decomposer food web) for each of 9 years, and soil microfaunal groups (secondary and tertiary consumers) for each of 6 of those years. We found that for measures of plant production and each of the three consumer trophic levels, inter-year dynamics were strongly affected by island size. Further, many variables were strongly affected by island size (and thus bottom-up regulation by soil fertility and resources) for some years but none in others, most likely due to inter-year variation in climatic conditions. For each of the plant and microbial variables for which we had 9 years of data, we also determined the inter-year coefficient of variation (CV), an inverse measure of stability. We found that CVs of some measures of plant productivity were greater on large islands while those of other measures were greater on smaller islands; CVs of microbial variables were unresponsive to island7 size. We also found that the effects of island size on the temporal dynamics of some variables were related to inter-year variability of macroclimatic variables. As such, our results show that the inter year dynamics of both plant productivity and decomposer biota across each of three trophic levels, as well as the inter-year stability of plant productivity, differs greatly across contrasting ecosystems, with potentially important but largely overlooked implications for community and ecosystem processes

    Preferences for different nitrogen forms by co-existing plant species and soil microbes: reply

    Get PDF
    The growing awareness that plants might use a variety of nitrogen (N) forms, both organic and inorganic, has raised questions about the role of resource partitioning in plant communities. It has been proposed that coexisting plant species might be able to partition a limited N pool, thereby avoiding competition for resources, through the uptake of different chemical forms of N. In this study, we used in situ stable isotope labeling techniques to assess whether coexisting plant species of a temperate grassland (England, UK) display preferences for different chemical forms of N, including inorganic N and a range of amino acids of varying complexity. We also tested whether plants and soil microbes differ in their preference for different N forms, thereby relaxing competition for this limiting resource. We examined preferential uptake of a range of 13C15N-labeled amino acids (glycine, serine, and phenylalanine) and 15N-labeled inorganic N by coexisting grass species and soil microbes in the field. Our data show that while coexisting plant species simultaneously take up a variety of N forms, including inorganic N and amino acids, they all showed a preference for inorganic N over organic N and for simple over the more complex amino acids. Soil microbes outcompeted plants for added N after 50 hours, but in the long term (33 days) the proportion of added 15N contained in the plant pool increased for all N forms except for phenylalanine, while the proportion in the microbial biomass declined relative to the first harvest. These findings suggest that in the longer term plants become more effective competitors for added 15N. This might be due to microbial turnover releasing 15N back into the plant–soil system or to the mineralization and subsequent plant uptake of 15N transferred initially to the organic matter pool. We found no evidence that soil microbes preferentially utilize any of the N forms added, despite previous studies showing that microbial preferences for N forms vary over time. Our data suggest that coexisting plants can outcompete microbes for a variety of N forms, but that such plant species show similar preferences for inorganic over organic N
    • 

    corecore