3,737 research outputs found

    Skyrmion Lattice in a Chiral Magnet

    Full text link
    Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice. Our study experimentally establishes magnetic materials lacking inversion symmetry as an arena for new forms of crystalline order composed of topologically stable spin states

    Solid-solid phase transition in hard ellipsoids

    Get PDF
    We present a computer simulation study of the crystalline phases of hard ellipsoids of revolution. A previous study [Phys. Rev. E, \textbf{75}, 020402 (2007)] showed that for aspect ratios a/b3a/b\ge 3 the previously suggested stretched-fcc phase [Mol. Phys., \textbf{55}, 1171 (1985)] is unstable with respect to a simple monoclinic phase with two ellipsoids of different orientations per unit cell (SM2). In order to study the stability of these crystalline phases at different aspect ratios and as a function of density we have calculated their free energies by thermodynamic integration. The integration path was sampled by an expanded ensemble method in which the weights were adjusted by the Wang-Landau algorithm. We show that for aspect ratios a/b2.0a/b\ge 2.0 the SM2 structure is more stable than the stretched-fcc structure for all densities above solid-nematic coexistence. Between a/b=1.55a/b=1.55 and a/b=2.0a/b=2.0 our calculations reveal a solid-solid phase transition

    Quantum Phase Transitions in the Itinerant Ferromagnet ZrZn2_2

    Full text link
    We report a study of the ferromagnetism of ZrZn2_{2}, the most promising material to exhibit ferromagnetic quantum criticality, at low temperatures TT as function of pressure pp. We find that the ordered ferromagnetic moment disappears discontinuously at pcp_c=16.5 kbar. Thus a tricritical point separates a line of first order ferromagnetic transitions from second order (continuous) transitions at higher temperature. We also identify two lines of transitions of the magnetisation isotherms up to 12 T in the pTp-T plane where the derivative of the magnetization changes rapidly. These quantum phase transitions (QPT) establish a high sensitivity to local minima in the free energy in ZrZn2_{2}, thus strongly suggesting that QPT in itinerant ferromagnets are always first order

    History dependence of the magnetic properties of single-crystal Fe1x_{1-x}Cox_{x}Si

    Full text link
    We report the magnetization, ac susceptibility, and specific heat of optically float-zoned single crystals of Fe1x_{1-x}Cox_{x}Si, 0.20x0.500.20 \leq x \leq 0.50. We determine the magnetic phase diagrams for all major crystallographic directions and cooling histories. After zero-field cooling, the phase diagrams resemble that of the archetypal stoichiometric cubic chiral magnet MnSi. Besides the helical and conical state, we observe a pocket of skyrmion lattice phase just below the helimagnetic ordering temperature. At the phase boundaries between these states evidence for slow dynamics is observed. When the sample is cooled in small magnetic fields, the phase pocket of skyrmion lattice may persist metastably down to lowest temperatures. Taken together with the large variation of the transition temperatures, transition fields, and the helix wavelength as a function of composition, this hysteresis identifies Fe1x_{1-x}Cox_{x}Si as an ideal material for future experiments exploring, for instance, the topological unwinding of the skyrmion lattice.Comment: 14 pages, 11 figure

    Chirality induced anomalous-Hall effect in helical spin crystals

    Full text link
    Under pressure, the itinerant helimagnet MnSi displays unusual magnetic properties. We have previously discussed a BCC helical spin crystal as a promising starting point for describing the high pressure phenomenology. This state has topologically nontrivial configurations of the magnetization field. Here we note the consequences for magneto-transport that arise generally from such spin textures. In particular a skyrmion density induced `topological' Hall effect, with unusual field dependence, is described.Comment: 4 pages, 3 figures, to appear in the proceedings of SCES 07 (the international conference on strongly correlated electron systems 2007 in Houston, USA

    Novel crystal phase in suspensions of hard ellipsoids

    Get PDF
    We present a computer simulation study on the crystalline phases of hard ellipsoids of revolution. For aspect ratios greater than or equal to 3 the previously suggested stretched-fcc phase [D. Frenkel and B. M. Mulder, Mol. Phys. 55, 1171 (1985)] is replaced by a novel crystalline phase. Its unit cell contains two ellipsoids with unequal orientations. The lattice is simple monoclinic. The angle of inclination of the lattice, beta, is a very soft degree of freedom, while the two right angles are stiff. For one particular value of beta, the close-packed version of this crystal is a specimen of the family of superdense packings recently reported [Donev et al., Phys. Rev. Lett. 92, 255506 (2004)]. These results are relevant for studies of nucleation and glassy dynamics of colloidal suspensions of ellipsoids.Comment: 4 pages, 4 figure

    Theoretical proposal predicting anomalous magnetoresistance and quadratic Hall effect in the partially ordered state of MnSi

    Full text link
    In [B. Binz, A. Vishwanath and V. Aji, Phys. Rev. Lett. 96, 207202 (2006)], a magnetic structure that breaks time reversal symmetry in the absence of net magnetization was proposed as an explanation for the high pressure "partially ordered" state of MnSi. Here we make explicit the anomalous magneto-transport properties of such a state: a magnetoresistivity which is linear and a Hall conductance which is quadratic in the applied magnetic field. Field cooling procedures for obtaining single domain samples are discussed. The anomalous effects are elaborated in the case of three geometries chosen to produce experimentally unambiguous signals of this unusual magnetic state; e.g., it is predicted that a field in z-direction induces an anisotropy in the x-y plane. Another geometry leads to a Hall voltage parallel to the magnetic field.Comment: 2 pages, 2 figures, International Conference on Magnetism 2006 in Kyot

    Die Wächter bewachen. Theologische Gegenwartsdiagnose bei Friedrich Wilhelm Graf

    Get PDF
    corecore