38,113 research outputs found

    Comment: Judicial Selection and Decisional Independence

    Get PDF
    To protect the decisional independence of judges without disturbing the proper balance of control on the exercise of judicial power, substantive reforms to the selection processes should include adjustments in judicial term length, responsible campaign finance reform and efforts to assure public understanding of the role of the judiciary in the government structure of the US

    Constitutional Analogies in the International Legal System

    Get PDF
    This Article explores issues at the frontier of international law and constitutional law. It considers five key structural and systemic challenges that the international legal system now faces: (1) decentralization and disaggregation; (2) normative and institutional hierarchies; (3) compliance and enforcement; (4) exit and escape; and (5) democracy and legitimacy. Each of these issues raises questions of governance, institutional design, and allocation of authority paralleling the questions that domestic legal systems have answered in constitutional terms. For each of these issues, I survey the international legal landscape and consider the salience of potential analogies to domestic constitutions, drawing upon and extending the writings of international legal scholars and international relations theorists. I also offer some preliminary thoughts about why some treaties and institutions, but not others, more readily lend themselves to analysis in constitutional terms. And I distinguish those legal and political issues that may generate useful insights for scholars studying the growing intersections of international and constitutional law from other areas that may be more resistant to constitutional analogies

    Growth and shear loss characteristics of an aerobic biofilm : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Technology in Biotechnology at Massey University

    Get PDF
    The application of biofilms in fermentation and waste treatment processes has been increasingly considered in recent years due to several inherent advantages over suspended growth systems. For example, they enable higher biomass hold-up providing larger quantity of cell per unit reactor volume which allows high loading rates. The biofilm systems, with fixed or immobilised cells, avoid washout conditions. The often difficult problems of sludge thickening, separation, recycle, and wasting associated with suspended growth systems are eliminated for biofilm systems. However, the major drawback lies in the control of film thickness in order to maintain high reactor productivities. The attached film thickness depends on both the biological parameters such as growth rate, and physical parameters such as hydrodynamic shear. The understanding of the growth and shear loss characteristics is a prerequisite for effective film thickness control. The main objective of this work therefore is to investigate the growth and shear loss characteristics of an aerobic biofilm utilizing phenol in a concentric cylindrical bioreactor. The growth and detachment of the biofilm was studied at different shear stresses, and their relationships were established. Detachment by shear was studied under two different conditions. One was examined simultaneously with growth under a constant shear stress where the biofilm detachment and growth occurred at the same time in the bioreactor. The other was examined via a separate shear test performed on the biofilm initially grown at a shear stress lower than that applied during the test. A method for measuring the torque exerted on the biofilm surface was first developed to enable computation of the related shear stress necessary for the study. The effect of film thickness on torque at film surface for a constant rotational speed was not significant. Shear stress can be conveniently determined from a quadratic relationship between torque and rotational speed for the range of film thickness studied. The substrate consumption is directly proportional to film thickness up to about 0.050 to 0.100 mm only, and beyond that it becomes independent of film thickness. The mass transfer resistance in the liquid phase appears to reach a minimum at shear stress greater than 3.44 N/m2 coinciding with the maximum steady-state substrate removal rate. The shear loss resistance of the biofilm increases with increasing shear stress during growth. The ultimate shear loss rate and shear stress relationship follows approximately: Rs = (40.82 – 2.750+0.1502 – 31.83e-0.610 ) × 10-2 The net growth rate varies with shear stress according to a parabolic function which predicts a shear stress of 19 N/m2 is required to achieve zero net growth. The biofilm-support adhesion must remain stronger than the film layer adhesion, otherwise, detachment will occur at the film-support interface rendering it impossible to control the film thickness

    Electromagnetic Zero Point Field as Active Energy Source in the Intergalactic Medium

    Get PDF
    For over twenty years the possibility that the electromagnetic zero point field (ZPF) may actively accelerate electromagnetically interacting particles in regions of extremely low particle density (as those extant in intergalactic space (IGS) with n < 1 particle/m^3 has been studied and analyzed. This energizing phenomenon has been one of the few contenders for acceleration of cosmic rays (CR), particularly at ultrahigh energies. The recent finding by the AGASA collaboration (Phys. Rev. Lett., 81, 1163, 1998) that the CR energy spectrum does not display any signs of the Greisen-Zatsepin-Kuzmin cut-off (that should be present if these CR particles were indeed generated in localized ultrahigh energies CR sources, as e.g., quasars and other highly active galactic nuclei), may indicate the need for an acceleration mechanism that is distributed throughout IGS as is the case with the ZPF. Other unexplained phenomena that receive an explanation from this mechanism are the generation of X-ray and gamma-ray backgrounds and the existence of Cosmic Voids. However recently, a statistical mechanics kind of challenge to the classical (not the quantum) version of the zero-point acceleration mechanism has been posed (de la Pena and Cetto, The Quantum Dice, 1996). Here we briefly examine the consequences of this challenge and a prospective resolution.Comment: 7 pages, no figure

    Willful Blindness: Federal Agencies\u27 Failure to Comply with the Regulatory Flexibility Act\u27s Periodic Review Requirement-And Current Proposals to Invigorate the Act

    Get PDF
    The Article first explains the basic requirements of the Regulatory Flexibility Act, and in particular focuses on the periodic review requirement contained in Section 610. It traces the history of Presidential efforts through the promulgation of executive orders to delay the implementation of regulations and require agencies to consult with regulated industries. Reviewing agency action from 1997-2005 following Section 610 review, it found agencies are confused as to when review is necessary, and, though Section 610 is meant to decrease the regulatory burden on small business, agencies often increase the regulatory burden on small business. It concludes the key problem regarding Section 610 agency is the very low review rate, and provides several legislative resolutions meant to compel agency review and greater small business participation in regulatory decision-making

    A Systematic Study of Neutrino Mixing and CP Violation from Lepton Mass Matrices with Six Texture Zeros

    Full text link
    We present a systematic study of 400 combinations of the charged lepton and neutrino mass matrices with six vanishing entries or texture zeros. Only 24 of them, which can be classified into a few distinct categories, are found to be compatible with current neutrino oscillation data at the 3σ3\sigma level. A peculiar feature of the lepton mass matrices in each category is that they have the same phenomenological consequences. Taking account of a simple seesaw scenario for six parallel patterns of the charged lepton and Dirac neutrino mass matrices with six zeros, we show that it is possible to fit the experimental data at or below the 2σ2\sigma level. In particular, the maximal atmospheric neutrino mixing can be reconciled with a strong neutrino mass hierarchy in the seesaw case. Numerical predictions are also obtained for the neutrino mass spectrum, flavor mixing angles, CP-violating phases and effective masses of the tritium beta decay and the neutrinoless double beta decay.Comment: 35 pages, 15 figures, minor change

    The Use and Abuse of Special-Purpose Entities in Public Finance

    Get PDF
    States increasingly are raising financing indirectly through special-purpose entities (SPEs), variously referred to as authorities, special authorities, or public authorities. Notwithstanding their long history and increasingly widespread use, relatively little is known or has been written about these entities. This article examines state SPEs and their functions, comparing them to SPEs used in corporate finance. States, even more than corporations, use these entities to reduce financial transparency and avoid public scrutiny, seriously threatening the integrity of public finance. The article analyzes how regulation could be designed in order to control that threat while maintaining the legitimate financing benefits provided by these state entities

    Rare tau Decays in R-parity Violating Supersymmetry

    Full text link
    We constrain, from rare tau decays, several combinations of λ\lambda and λ′\lambda' type couplings coming from Supersymmetry without R-parity. The processes that we consider are tau --> l M, tau --> l_i l_j l_k, and tau --> l gamma, where l stands for either e or mu, and M is the generic symbol for a meson. We update several existing bounds, and provide a few new ones too.Comment: 12 pages, no figure
    • …
    corecore