7,424 research outputs found

    A most compendious and facile quantum de Finetti theorem

    Get PDF
    In its most basic form, the finite quantum de Finetti theorem states that the reduced k-partite density operator of an n-partite symmetric state can be approximated by a convex combination of k-fold product states. Variations of this result include Renner's “exponential” approximation by “almost-product” states, a theorem which deals with certain triples of representations of the unitary group, and the result of D'Cruz et al. [e-print quant-ph/0606139;Phys. Rev. Lett. 98, 160406 (2007)] for infinite-dimensional systems. We show how these theorems follow from a single, general de Finetti theorem for representations of symmetry groups, each instance corresponding to a particular choice of symmetry group and representation of that group. This gives some insight into the nature of the set of approximating states and leads to some new results, including an exponential theorem for infinite-dimensional systems

    Counterfactual Computation

    Full text link
    Suppose that we are given a quantum computer programmed ready to perform a computation if it is switched on. Counterfactual computation is a process by which the result of the computation may be learnt without actually running the computer. Such processes are possible within quantum physics and to achieve this effect, a computer embodying the possibility of running the computation must be available, even though the computation is, in fact, not run. We study the possibilities and limitations of general protocols for the counterfactual computation of decision problems (where the result r is either 0 or 1). If p(r) denotes the probability of learning the result r ``for free'' in a protocol then one might hope to design a protocol which simultaneously has large p(0) and p(1). However we prove that p(0)+p(1) never exceeds 1 in any protocol and we derive further constraints on p(0) and p(1) in terms of N, the number of times that the computer is not run. In particular we show that any protocol with p(0)+p(1)=1-epsilon must have N tending to infinity as epsilon tends to 0. These general results are illustrated with some explicit protocols for counterfactual computation. We show that "interaction-free" measurements can be regarded as counterfactual computations, and our results then imply that N must be large if the probability of interaction is to be close to zero. Finally, we consider some ways in which our formulation of counterfactual computation can be generalised.Comment: 19 pages. LaTex, 2 figures. Revised version has some new sections and expanded explanation

    Physical implementations of quantum absorption refrigerators

    Full text link
    Absorption refrigerators are autonomous thermal machines that harness the spontaneous flow of heat from a hot bath into the environment in order to perform cooling. Here we discuss quantum realizations of absorption refrigerators in two different settings: namely, cavity and circuit quantum electrodynamics. We first provide a unified description of these machines in terms of the concept of virtual temperature. Next, we describe the two different physical setups in detail and compare their properties and performance. We conclude with an outlook on future work and open questions in this field of research.Comment: Patrick P. Potts was formerly known as Patrick P. Hofe

    Novel steady state of a microtubule assembly in a confined geometry

    Full text link
    We study the steady state of an assembly of microtubules in a confined volume, analogous to the situation inside a cell where the cell boundary forms a natural barrier to growth. We show that the dynamical equations for growing and shrinking microtubules predict the existence of two steady states, with either exponentially decaying or exponentially increasing distribution of microtubule lengths. We identify the regimes in parameter space corresponding to these steady states. In the latter case, the apparent catastrophe frequency near the boundary was found to be significantly larger than that in the interior. Both the exponential distribution of lengths and the increase in the catastrophe frequency near the cell margin is in excellent agreement with recent experimental observations.Comment: 8 pages, submitted to Phys. Rev.
    • …
    corecore