3,743 research outputs found

    The optimal search for an astrophysical gravitational-wave background

    Get PDF
    Roughly every 2-10 minutes, a pair of stellar mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using Monte Carlo simulations, we demonstrate that the search is both "safe" and effective: it is not fooled by instrumental artefacts such as glitches, and it recovers simulated stochastic signals without bias. Given realistic assumptions, we estimate that the search can detect the binary black hole background with about one day of design sensitivity data versus β‰ˆ40\approx 40 months using the traditional cross-correlation search. This framework independently constrains the merger rate and black hole mass distribution, breaking a degeneracy present in the cross-correlation approach. The search provides a unified framework for population studies of compact binaries, which is cast in terms of hyper-parameter estimation. We discuss a number of extensions and generalizations including: application to other sources (such as binary neutron stars and continuous-wave sources), simultaneous estimation of a continuous Gaussian background, and applications to pulsar timing.Comment: 16 pages, 9 figure

    Seedless clustering in all-sky searches for gravitational-wave transients

    Get PDF
    The problem of searching for unmodeled gravitational-wave bursts can be thought of as a pattern recognition problem: how to find statistically significant clusters in spectrograms of strain power when the precise signal morphology is unknown. In a previous publication, we showed how "seedless clustering" can be used to dramatically improve the sensitivity of searches for long-lived gravitational-wave transients. In order to manage the computational costs, this initial analysis focused on externally triggered searches where the source location and emission time are both known to some degree of precision. In this paper, we show how the principle of seedless clustering can be extended to facilitate computationally-feasible, all-sky searches where the direction and emission time of the source are entirely unknown. We further demonstrate that it is possible to achieve a considerable reduction in computation time by using graphical processor units (GPUs), thereby facilitating more sensitive searches.Comment: 9 pages, 2 figure

    Determining the population properties of spinning black holes

    Full text link
    There are at least two formation scenarios consistent with the first gravitational-wave observations of binary black hole mergers. In field models, black hole binaries are formed from stellar binaries that may undergo common envelope evolution. In dynamic models, black hole binaries are formed through capture events in globular clusters. Both classes of models are subject to significant theoretical uncertainties. Nonetheless, the conventional wisdom holds that the distribution of spin orientations of dynamically merging black holes is nearly isotropic while field-model black holes prefer to spin in alignment with the orbital angular momentum. We present a framework in which observations of black hole mergers can be used to measure ensemble properties of black hole spin such as the typical black hole spin misalignment. We show how to obtain constraints on population hyperparameters using minimal assumptions so that the results are not strongly dependent on the uncertain physics of formation models. These data-driven constraints will facilitate tests of theoretical models and help determine the formation history of binary black holes using information encoded in their observed spins. We demonstrate that the ensemble properties of binary detections can be used to search for and characterize the properties of two distinct populations of black hole mergers.Comment: 10 pages, 5 figures, 1 table. Minor revisions, published in PR

    Detecting compact binary coalescences with seedless clustering

    Get PDF
    Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors. Although matched filtering is the optimal search method for well-modeled systems, alternative detection strategies can be used to guard against theoretical errors (e.g., involving new physics and/or assumptions about spin/eccentricity) while providing a measure of redundancy. In previous work, we showed how "seedless clustering" can be used to detect long-lived gravitational-wave transients in both targeted and all-sky searches. In this paper, we apply seedless clustering to the problem of low-mass (Mtotal≀10MβŠ™M_\text{total}\leq10M_\odot) compact binary coalescences for both spinning and eccentric systems. We show that seedless clustering provides a robust and computationally efficient method for detecting low-mass compact binaries

    The mass distribution of Galactic double neutron stars

    Full text link
    The conventional wisdom, dating back to 2012, is that the mass distribution of Galactic double neutron stars is well-fit by a Gaussian distribution with a mean of 1.33MβŠ™1.33 M_\odot and a width of 0.09MβŠ™0.09 M_\odot. With the recent discovery of new Galactic double neutron stars and GW170817, the first neutron star merger event to be observed with gravitational waves, it is timely to revisit this model. In order to constrain the mass distribution of double neutron stars, we perform Bayesian inference using a sample of 17 Galactic double neutron stars effectively doubling the sample used in previous studies. We expand the space of models so that the recycled neutron star need not be drawn from the same distribution as the non-recycled companion. Moreover, we consider different functional forms including uniform, single-Gaussian, and two-Gaussian distributions. While there is insufficient data to draw firm conclusions, we find positive support (a Bayes factor of 9) for the hypothesis that recycled and non-recycled neutron stars have distinct mass distributions. The most probable model---preferred with a Bayes factor of 29 over the conventional model---is one in which the recycled neutron star mass is distributed according to a two-Gaussian distribution and the non-recycled neutron star mass is distributed uniformly. We show that precise component mass measurements of β‰ˆ20\approx 20 double neutron stars are required in order to determine with high confidence (a Bayes factor of 150) if recycled and non-recycled neutron stars come from a common distribution. Approximately 6060 are needed in order to establish the detailed shape of the distributions.Comment: Minor update of PSR J1913+1102 masses, 13 pages, 7 figures, 5 table

    Evolution towards Smart Optical Networking: Where Artificial Intelligence (AI) meets the World of Photonics

    Full text link
    Smart optical networks are the next evolution of programmable networking and programmable automation of optical networks, with human-in-the-loop network control and management. The paper discusses this evolution and the role of Artificial Intelligence (AI)
    • …
    corecore