59,385 research outputs found

    Measurement-induced interference in an inhomogeneous gravitational field

    Get PDF
    A very interesting quantum mechanical effect is the emergence of gravity-induced interference, which has already been detected. This effect also shows us that gravity is at the quantum level not a purely geometric effect, the mass of the employed particles appears explicitly in the interference expression. In this work we will generalize some previous results. It will be shown that the introduction of a second order approximation in the propagator of a particle, immersed in the Earth's gravitational field, and whose coordinates are being continuously monitored, allows us to include, in the corresponding complex oscillator, a frequency which now depends on the geometry of the source of the gravitational field, a fact that is absent in the case of a homogeneous field. Using this propagator we will analyze the interference pattern of two particle beams whose coordinates are being continuously monitored. We will compare our results againt the case of a homogeneous field, and also against the measurement ouputs of the Colella, Overhauser, and Werner experiment, and find that the difference in the dependence upon the geometry of the source of the gravitational field could render detectable differences in their respective measurement outputs.Comment: 15 pages, accepted in Physics Letters

    Group-theoretical structure of quantum measurements and equivalence principle

    Get PDF
    The transverse group associated to some continuous quantum measuring processes is analyzed in the presence of nonvanishing gravitational fields. This is done considering, as an exmaple, the case of a particle whose coordinates are being monitored. Employing the so called restricted path integral formalism, it will be shown that the measuring process could always contain information concerning the gravitational field. In other words, it seems that with the presence of a measuring process the equivalence principle may, in some cases, break down. The relation between the breakdown of the equivalence principle, at quantum level, and the fact that the gravitational field could act always as a decoherence environment, is also considered. The phenomena of quantum beats of quantum optics will allow us to consider the possibility that the experimental corroboration of the equivalence principle at quantum level could be taken as an indirect evidence in favor of the quantization of the gravitational field, i.e., the quantum properties of this field avoid the violation of the equivalence principle.Comment: 13 pages, accepted in Modern Physics Letters

    Comment on "Chain Length Scaling of Protein Folding Time", PRL 77, 5433 (1996)

    Full text link
    In a recent Letter, Gutin, Abkevich, and Shakhnovich (GAS) reported on a series of dynamical Monte Carlo simulations on lattice models of proteins. Based on these highly simplified models, they found that four different potential energies lead to four different folding time scales tau_f, where tau_f scales with chain length as N^lambda (see, also, Refs. [2-4]), with lambda varying from 2.7 to 6.0. However, due to the lack of microscopic models of protein folding dynamics, the interpretation and origin of the data have remained somewhat speculative. It is the purpose of this Comment to point out that the application of a simple "mesoscopic" model (cond-mat/9512019, PRL 77, 2324, 1996) of protein folding provides a full account of the data presented in their paper. Moreover, we find a major qualitative disagreement with the argumentative interpretation of GAS. Including, the origin of the dynamics, and size of the critical folding nucleus.Comment: 1 page Revtex, 1 fig. upon request. Submitted to PR
    • …
    corecore