64,811 research outputs found

    Remote Inflation: Hybrid-like inflation without hybrid-type potential

    Full text link
    A new scenario of hybrid-like inflation is considered without using hybrid-type potential. Radiation raised continuously by a dissipating inflaton field keeps symmetry restoration in a remote sector, and the false-vacuum energy of the remote sector dominates the energy density during inflation. Remote inflation is terminated when the temperature reaches the critical temperature, or when the slow-roll condition is violated. Without introducing a complex form of couplings, inflaton field may either roll-in (like a standard hybrid inflation) or roll-out (like an inverted-hybrid model or quintessential inflation) on arbitrary inflaton potential. Significant signatures of remote inflation can be observed in the spectrum caused by (1) the inhomogeneous phase transition in the remote sector, or (2) a successive phase transition in the remote sector. Remote inflation can predict strong amplification or suppression of small-scale perturbations without introducing multiple inflation. Since the inflaton may have a run-away potential, it is also possible to identify the inflaton with quintessence, without introducing additional mechanisms. Even if the false-vacuum energy is not dominated by the remote sector, the phase transition in the remote sector is possible during warm inflation, which may cause significant amplification/suppression of the curvature perturbations.Comment: 28 pages, 1 figure, fixed references, accepted for publication in JCA

    Entropy production and curvature perturbation from dissipative curvatons

    Full text link
    Considering the curvaton field that follows dissipative slow-roll equation, we show that the field can lead to entropy production and generation of curvature perturbation after reheating. Spectral index is calculated to discriminate warm and thermal scenarios of dissipative curvatons from the standard curvaton model. In contrast to the original curvaton model, quadratic potential is not needed in the dissipative scenario, since the growth in the oscillating period is not essential for the model.Comment: 29 pages, 2 figures, accepted for publication in JCA

    Aspects of warm-flat directions

    Full text link
    Considering the mechanism of dissipative slow-roll that has been used in warm inflation scenario, we show that dissipation may alter usual cosmological scenarios associated with SUSY-flat directions. We mainly consider SUSY-flat directions that have strong interactions with non-flat directions and may cause strong dissipation both in thermal and non-thermal backgrounds. An example is the Affleck-Dine mechanism in which dissipation may create significant (both qualitative and quantitative) discrepancies between the conventional scenario and the dissipative one. We also discuss several mechanisms of generating curvature perturbations in which the dissipative field, which is distinguished from the inflaton field, can be used as the source of cosmological perturbations. Considering the Morikawa-Sasaki dissipative coefficient, the damping caused by the dissipation may be significant for many MSSM flat directions even if the dissipation is far from thermal equilibrium.Comment: 22 pages, accepted for publication in International Journal of Modern Physics

    Evolution of the curvature perturbations during warm inflation

    Full text link
    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum.Comment: 23 pages, 1 figure, fixed references, accepted for publication in JCA

    Brane inflation without slow-roll

    Full text link
    The scenario of brane inflation without using the conventional slow-roll approximations has been investigated. Based on the mechanism of generating the curvature perturbations at the end of inflation, a new brane inflation paradigm was developed. The conditions for making a sufficiently large enough number of e-foldings and for generating the curvature perturbations without producing dangerous relics were also examined. Benefits of our scenario are subsequently discussed in detail.Comment: 21 pages, 2 figures, added an appendix, accepted for publication in JHE

    Modulated Inflation

    Get PDF
    We have studied modulated inflation that generates curvature perturbation from light-field fluctuation. As discussed in previous works, even if the fluctuation of the inflaton itself does not generate the curvature perturbation at the horizon crossing, fluctuation of a light field may induce fluctuation for the end-line of inflation and this may lead to generation of cosmological perturbation ``at the end of the inflation''. Our scenario is different from those that are based on the fluctuations of the boundary of the inflaton trajectory, as clearly explained in this paper by using the δN\delta N formalism. In this paper, we will consider the perturbation of the inflaton velocity that can be induced by a light field other than the inflaton. We also explain the crucial difference from the standard multi-field inflation model. We show concrete examples of the modulated inflation scenario in which non-gaussianity can be generated. We also discuss the running of the non-gaussianity parameter.Comment: 17pages, k^2/a^2 is included, accepted for publication in PL

    Hybrid Curvatons from Broken Symmetry

    Full text link
    We present a new general mechanism for generating curvature perturbations after inflation. Our model is based on the simple assumption that a field that starts to oscillate after inflation has a potential characterized by an underlying global symmetry that is slightly or badly broken. Inhomogeneous preheating occurs due to the oscillation with the broken symmetry. Unlike the traditional curvaton model, we will not identify the curvaton with the oscillating field. The curvaton is identified with the preheat field that could be either a scalar, vector, or fermionic field. We introduce an explicit mass term for the curvaton, which is important for later evolution and the decay. Our present model represents the simplest example of the hybrid of the curvatons and inhomogeneous preheating.Comment: 21pages, 5 figures, accepted for publication in JHE

    Primordial black holes from cosmic necklaces

    Full text link
    Cosmic necklaces are hybrid topological defects consisting of monopoles and strings. We argue that primordial black holes(PBHs) may have formed from loops of the necklaces, if there exist stable winding states, such as coils and cycloops. Unlike the standard scenario of PBH formation from string loops, in which the kinetic energy plays important role when strings collapse into black holes, the PBH formation may occur in our scenario after necklaces have dissipated their kinetic energy. Then, the significant difference appears in the production ratio. In the standard scenario, the production ratio ff becomes a tiny fraction f1020f\sim 10^{-20}, however it becomes f1f \sim 1 in our case. On the other hand, the typical mass of the PBHs is much smaller than the standard scenario, if they are produced in the same epoch. As the two mechanisms may work at the same time, the necklaces may have more than one channel of the gravitational collapse. Although the result obtained in this paper depends on the evolution of the dimensionless parameter rr, the existence of the winding state could be a serious problem in some cases. Since the existence of the winding state in brane models is due to the existence of a non-tivial circle in the compactified space, the PBH formation can be used to probe the structure of the compactified space. Black holes produced by this mechanism may have peculiar properties.Comment: 22pages, 3 figures, added many comments, +1 figure, accepted for publication in JHE

    Running spectral index from shooting-star moduli

    Full text link
    We construct an inflationary model that is consistent with both large non-Gaussianity and a running spectral index. The scenario of modulated inflation suggests that modulated perturbation can induce the curvature perturbation with a large non-Gaussianity, even if the inflaton perturbation is negligible. Using this idea, we consider a multi-field extension of the modulated inflation scenario and examine the specific situation where different moduli are responsible for the perturbation at different scales. We suppose that the additional moduli (shooting-star moduli) is responsible for the curvature perturbation at the earlier inflationary epoch and it generates the fluctuation with n>1 spectral index at this scale. After a while, another moduli (or inflaton) takes the place and generates the perturbation with n<1. At the transition point the two fluctuations are comparable with each other. We show how the spectral index is affected by the transition induced by the shooting-star moduli.Comment: 14 pages, latex, accepted for publication in JHE

    Cosmological perturbations from inhomogeneous preheating and multi-field trapping

    Full text link
    We consider inhomogeneous preheating in a multi-field trapping model. The curvature perturbation is generated by inhomogeneous preheating which induces multi-field trapping at the enhanced symmetric point (ESP), and results in fluctuation in the number of e-foldings. Instead of considering simple reheating after preheating, we consider a scenario of shoulder inflation induced by the trapping. The fluctuation in the number of e-foldings is generated during this weak inflationary period, when the additional light scalar field is trapped at the local maximum of its potential. The situation may look similar to locked or thermal inflation or even to hybrid inflation, but we will show that the present mechanism of generating the curvature perturbation is very different from these others. Unlike the conventional trapped inflationary scenario, we do not make the assumption that an ESP appears at some unstable point on the inflaton potential. This assumption is crucial in the original scenario, but it is not important in the multi-field model. We also discuss inhomogeneous preheating at late-time oscillation, in which the magnitude of the curvature fluctuation can be enhanced to accommodate low inflationary scale.Comment: 18pages, 2 figures, to appear in JHE
    corecore