6,082 research outputs found

    Empirical Gaussian priors for cross-lingual transfer learning

    Full text link
    Sequence model learning algorithms typically maximize log-likelihood minus the norm of the model (or minimize Hamming loss + norm). In cross-lingual part-of-speech (POS) tagging, our target language training data consists of sequences of sentences with word-by-word labels projected from translations in kk languages for which we have labeled data, via word alignments. Our training data is therefore very noisy, and if Rademacher complexity is high, learning algorithms are prone to overfit. Norm-based regularization assumes a constant width and zero mean prior. We instead propose to use the kk source language models to estimate the parameters of a Gaussian prior for learning new POS taggers. This leads to significantly better performance in multi-source transfer set-ups. We also present a drop-out version that injects (empirical) Gaussian noise during online learning. Finally, we note that using empirical Gaussian priors leads to much lower Rademacher complexity, and is superior to optimally weighted model interpolation.Comment: Presented at NIPS 2015 Workshop on Transfer and Multi-Task Learnin

    Multi-Task Learning of Keyphrase Boundary Classification

    Full text link
    Keyphrase boundary classification (KBC) is the task of detecting keyphrases in scientific articles and labelling them with respect to predefined types. Although important in practice, this task is so far underexplored, partly due to the lack of labelled data. To overcome this, we explore several auxiliary tasks, including semantic super-sense tagging and identification of multi-word expressions, and cast the task as a multi-task learning problem with deep recurrent neural networks. Our multi-task models perform significantly better than previous state of the art approaches on two scientific KBC datasets, particularly for long keyphrases.Comment: ACL 201

    Identifying beneficial task relations for multi-task learning in deep neural networks

    Full text link
    Multi-task learning (MTL) in deep neural networks for NLP has recently received increasing interest due to some compelling benefits, including its potential to efficiently regularize models and to reduce the need for labeled data. While it has brought significant improvements in a number of NLP tasks, mixed results have been reported, and little is known about the conditions under which MTL leads to gains in NLP. This paper sheds light on the specific task relations that can lead to gains from MTL models over single-task setups.Comment: Accepted for publication at EACL 201

    Is writing style predictive of scientific fraud?

    Get PDF
    The problem of detecting scientific fraud using machine learning was recently introduced, with initial, positive results from a model taking into account various general indicators. The results seem to suggest that writing style is predictive of scientific fraud. We revisit these initial experiments, and show that the leave-one-out testing procedure they used likely leads to a slight over-estimate of the predictability, but also that simple models can outperform their proposed model by some margin. We go on to explore more abstract linguistic features, such as linguistic complexity and discourse structure, only to obtain negative results. Upon analyzing our models, we do see some interesting patterns, though: Scientific fraud, for examples, contains less comparison, as well as different types of hedging and ways of presenting logical reasoning.Comment: To appear in the Proceedings of the Workshop on Stylistic Variation 2017 (EMNLP), 6 page

    Better, Faster, Stronger Sequence Tagging Constituent Parsers

    Get PDF
    Sequence tagging models for constituent parsing are faster, but less accurate than other types of parsers. In this work, we address the following weaknesses of such constituent parsers: (a) high error rates around closing brackets of long constituents, (b) large label sets, leading to sparsity, and (c) error propagation arising from greedy decoding. To effectively close brackets, we train a model that learns to switch between tagging schemes. To reduce sparsity, we decompose the label set and use multi-task learning to jointly learn to predict sublabels. Finally, we mitigate issues from greedy decoding through auxiliary losses and sentence-level fine-tuning with policy gradient. Combining these techniques, we clearly surpass the performance of sequence tagging constituent parsers on the English and Chinese Penn Treebanks, and reduce their parsing time even further. On the SPMRL datasets, we observe even greater improvements across the board, including a new state of the art on Basque, Hebrew, Polish and Swedish.Comment: NAACL 2019 (long papers). Contains corrigendu

    Why is unsupervised alignment of English embeddings from different algorithms so hard?

    Full text link
    This paper presents a challenge to the community: Generative adversarial networks (GANs) can perfectly align independent English word embeddings induced using the same algorithm, based on distributional information alone; but fails to do so, for two different embeddings algorithms. Why is that? We believe understanding why, is key to understand both modern word embedding algorithms and the limitations and instability dynamics of GANs. This paper shows that (a) in all these cases, where alignment fails, there exists a linear transform between the two embeddings (so algorithm biases do not lead to non-linear differences), and (b) similar effects can not easily be obtained by varying hyper-parameters. One plausible suggestion based on our initial experiments is that the differences in the inductive biases of the embedding algorithms lead to an optimization landscape that is riddled with local optima, leading to a very small basin of convergence, but we present this more as a challenge paper than a technical contribution.Comment: Accepted at EMNLP 201

    Few-Shot and Zero-Shot Learning for Historical Text Normalization

    Get PDF
    Historical text normalization often relies on small training datasets. Recent work has shown that multi-task learning can lead to significant improvements by exploiting synergies with related datasets, but there has been no systematic study of different multi-task learning architectures. This paper evaluates 63~multi-task learning configurations for sequence-to-sequence-based historical text normalization across ten datasets from eight languages, using autoencoding, grapheme-to-phoneme mapping, and lemmatization as auxiliary tasks. We observe consistent, significant improvements across languages when training data for the target task is limited, but minimal or no improvements when training data is abundant. We also show that zero-shot learning outperforms the simple, but relatively strong, identity baseline.Comment: Accepted at DeepLo-201

    Cross-lingual RST Discourse Parsing

    Get PDF
    Discourse parsing is an integral part of understanding information flow and argumentative structure in documents. Most previous research has focused on inducing and evaluating models from the English RST Discourse Treebank. However, discourse treebanks for other languages exist, including Spanish, German, Basque, Dutch and Brazilian Portuguese. The treebanks share the same underlying linguistic theory, but differ slightly in the way documents are annotated. In this paper, we present (a) a new discourse parser which is simpler, yet competitive (significantly better on 2/3 metrics) to state of the art for English, (b) a harmonization of discourse treebanks across languages, enabling us to present (c) what to the best of our knowledge are the first experiments on cross-lingual discourse parsing.Comment: To be published in EACL 2017, 13 page

    Multi-task Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces

    Get PDF
    We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of sequence classification tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state-of-the-art for topic-based sentiment analysis.Comment: To appear at NAACL 2018 (long
    corecore