89,158 research outputs found

    Identification of perturbation modes and controversies in ekpyrotic perturbations

    Get PDF
    If the linear perturbation theory is valid through the bounce, the surviving fluctuations from the ekpyrotic scenario (cyclic one as well) should have very blue spectra with suppressed amplitude for the scalar-type structure. We derive the same (and consistent) result using the curvature perturbation in the uniform-field (comoving) gauge and in the zero-shear gauge. Previously, Khoury et al. interpreted results from the latter gauge condition incorrectly and claimed the scale-invariant spectrum, thus generating controversy in the literature. We also correct similar errors in the literature based on wrong mode identification and joining condition. No joining condition is needed for the derivation.Comment: 5 pages, substantially revised, match with PLB versio

    Fully nonlinear and exact perturbations of the Friedmann world model

    Full text link
    In 1988 Bardeen has suggested a pragmatic formulation of cosmological perturbation theory which is powerful in practice to employ various fundamental gauge conditions easily depending on the character of the problem. The perturbation equations are presented without fixing the temporal gauge condition and are arranged so that one can easily impose fundamental gauge conditions by simply setting one of the perturbation variables in the equations equal to zero. In this way one can use the gauge degrees of freedom as an advantage in handling problems. Except for the synchronous gauge condition, all the other fundamental gauge conditions completely fix the gauge mode, and consequently, each variable in such a gauge has a unique gauge invariant counterpart, so that we can identify the variable as the gauge-invariant one. Here, we extend Bardeen's linear formulation to fully nonlinear order in perturbations, with the gauge advantage kept intact. Derived equations are exact, and from these we can easily expand to higher order perturbations in a gauge-ready form. We consider scalar- and vector-type perturbations of an ideal fluid in a flat background; we also present the multiple components of ideal fluid case. As applications we present fully nonlinear density and velocity perturbation equations in Einstein's gravity in the zero-pressure medium, vorticity generation from pure scalar-type perturbation, and fluid formulation of a minimally coupled scalar field, all in the comoving gauge. We also present the equation of gravitational waves generated from pure scalar- and vector-type perturbations.Comment: 23 pages, to appear in MNRA

    Conserved cosmological structures in the one-loop superstring effective action

    Get PDF
    A generic form of low-energy effective action of superstring theories with one-loop quantum correction is well known. Based on this action we derive the complete perturbation equations and general analytic solutions in the cosmological spacetime. Using the solutions we identify conserved quantities characterizing the perturbations: the amplitude of gravitational wave and the perturbed three-space curvature in the uniform-field gauge both in the large-scale limit, and the angular-momentum of rotational perturbation are conserved independently of changing gravity sector. Implications for calculating perturbation spectra generated in the inflation era based on the string action are presented.Comment: 5 pages, no figure, To appear in Phys. Rev.

    Knowledge, attitude and perception on radiation imaging among children's caregivers in the pediatric dental clinic

    Full text link
    OBJECTIVE: Nuclear medicine provides important clinical information for diagnostic and therapeutic purposes. Use of medical imaging has gradually increased in the United States and this has raised health concerns about the potential future risks associated with radiation exposure in children. While studies have evaluated the adverse effects of imaging procedures, there is insufficient evidence about communicating radiation risks. The overall purpose of this paper is to review radiation risks in pediatric imaging using published evidence by the World Health Organization and to evaluate the knowledge and attitude of caregivers towards radiation risks in pediatric imaging. Specifically, we aim to determine whether an educational brochure improves parental knowledge of radiation and/or changes in attitude and perception to allow their children to undergo dental radiographs. METHODS: A prospective sample survey was performed of caregivers who presented with their child to the Boston University Pediatric Oral Healthcare Center. Parents or legal guardians (18 years or older) who accompanied a child were eligible for inclusion and approached for enrollment. Pre- and post-survey questionnaires were used to evaluate parents’ or guardians’ level of knowledge and attitude about the risks and benefits of dental radiographs. Parents were also asked their comfort level to allow their child to undergo dental radiographs. After completing the pre-survey questionnaire, parents were asked to read the English-language informational handout. Statistical analysis was performed through Microsoft Excel 2013. Descriptive analysis was conducted to summarize the survey responses. RESULTS: Among 30 parents who were surveyed, a small proportion (30%) of parents were very comfortable with dentist using dental radiographs on their child, versus 57% after reading the handout. Results showed that the informational handout improved the parental knowledge of risks and benefits of ionizing radiation. Most parents indicated that the handout was helpful and they reported increased level of comfort and willingness in their children receiving radiation imaging during dental treatment procedures. DISCUSSION: Educating parents or caregivers through an informational handout is a helpful resource in improving their knowledge and in relieving their concerns. Informing parents about the risks of ionizing radiation does not change parental willingness for their children to undergo dental radiographs
    • …
    corecore