104 research outputs found

    Manipulation of Rat Movement via Nigrostriatal Stimulation Controlled by Human Visually Evoked Potentials

    Get PDF
    Here, we report that the development of a brain-to-brain interface (BBI) system that enables a human user to manipulate rat movement without any previous training. In our model, the remotely-guided rats (known as ratbots) successfully navigated a T-maze via contralateral turning behaviour induced by electrical stimulation of the nigrostriatal (NS) pathway by a brain-computer interface (BCI) based on the human controller's steady-state visually evoked potentials (SSVEPs). The system allowed human participants to manipulate rat movement with an average success rate of 82.2% and at an average rat speed of approximately 1.9 m/min. The ratbots had no directional preference, showing average success rates of 81.1% and 83.3% for the left-and right-turning task, respectively. This is the first study to demonstrate the use of NS stimulation for developing a highly stable ratbot that does not require previous training, and is the first instance of a training-free BBI for rat navigation. The results of this study will facilitate the development of borderless communication between human and untrained animals, which could not only improve the understanding of animals in humans, but also allow untrained animals to more effectively provide humans with information obtained with their superior perception.11Ysciescopu

    Dual quadratic differentials and entire minimal graphs in Heisenberg space

    Full text link
    We define holomorphic quadratic differentials for spacelike surfaces with constant mean curvature in the Lorentzian homogeneous spaces L(κ,τ)\mathbb{L}(\kappa,\tau) with isometry group of dimension 4, which are dual to the Abresch-Rosenberg differentials in the Riemannian counterparts E(κ,τ)\mathbb{E}(\kappa,\tau), and obtain some consequences. On the one hand, we give a very short proof of the Bernstein problem in Heisenberg space, and provide a geometric description of the family of entire graphs sharing the same differential in terms of a 2-parameter conformal deformation. On the other hand, we prove that entire minimal graphs in Heisenberg space have negative Gauss curvature.Comment: 19 page

    The impact of emotional intelligence on problem behaviour among adolescents in Malaysia

    Get PDF
    Juvenile offences are on the rise over the recent years and have led to serious societal concern in Malaysia. Thus, this study was designed to investigate the relationship of both interpersonal and intrapersonal emotional intelligence relating to problem behaviours among adolescents in Malaysia. A quantitative research design method and cross-sectional research design was selected as our main data collection method to obtain data from different age groups and demography status of populations at same period. By using multistage cluster sampling method, 600 school-going adolescents from Penang, Perak and Johor were recruited and 496 sets of questionnaires were completed. The age of the participants ranged from 13 to 17 (m = 15.07, SD = 1.08). Profile of Emotional (PEC) scale and Strength and Difficulties Questionnaire (SDQ) were used as the instruments to assess the variables understudy. The results showed that both intrapersonal and interpersonal emotional intelligence were negatively correlated with problem behaviours. Furthermore, multiple regression analysis revealed that intrapersonal emotional intelligence is the only significant predictor in explaining adolescents’ problem behaviours. This research provides empirical support to the importance of intrapersonal emotional intelligence in discouraging adolescents from developing problem behaviours

    Chemical Modification of the Human Ether-a-go-go-related gene(HERG) K* Current by the Amino-Group Reagent Trinitrobenzene Sulfonic Acid

    Get PDF
    We investigated the effects of trinitrobenzene sulfonic acid (TNBS), an amino-group reagent, on the humanether-a-go-go-related gene (HERG) K+ channels expressed inXenopus oocytes. TNBS neutralizes the positively charged amino-agroups of peptideN-terminal and lysine residues. External application of TNBS at 10 mM for 5 min irreversibly shifted the curves for currents at the end of the pulse and tail currents of HERG to a more negative potential and decreased the maximal amplitude of the Itail curve (Itail, max). TNBS had little effect on either the activated current-voltage relationship or the reversal potential of HERG current, indicating that TNBS did not change ion selectivity properties. TNBS shifted the time constant curves of both activation and deactivation of the HERG current to a more hyperpolarized potential; TNBS's effect was greater on channel opening than channel closing. External H+ is known to inhibit HERG current by shifting V1/2 to the right and decreasing Itail, max. TNBS enhanced the blockade of external H+ by exaggerating the effect of H+ on Itail, max, not on V1/2. Our data provide evidence for the presence of essential amino-groups that are associated with the normal functioning of the HERG channel and evidence that these groups modify the blocking effect of external H+ on the current.We are grateful to Dr. Jokubas Ziburkus for reading and editing this manuscript and to Hee-Kyung Hong for technical support. Ji-Hyun Yun was the recipient of the BK21 fellowship for graduate students in 2006. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (R04- 2003-000-10007-0)

    Simulation Method for the Physical Deformation of a Three-Dimensional Soft Body in Augmented Reality-Based External Ventricular Drainage

    Get PDF
    Objectives Intraoperative navigation reduces the risk of major complications and increases the likelihood of optimal surgical outcomes. This paper presents an augmented reality (AR)-based simulation technique for ventriculostomy that visualizes brain deformations caused by the movements of a surgical instrument in a three-dimensional brain model. This is achieved by utilizing a position-based dynamics (PBD) physical deformation method on a preoperative brain image. Methods An infrared camera-based AR surgical environment aligns the real-world space with a virtual space and tracks the surgical instruments. For a realistic representation and reduced simulation computation load, a hybrid geometric model is employed, which combines a high-resolution mesh model and a multiresolution tetrahedron model. Collision handling is executed when a collision between the brain and surgical instrument is detected. Constraints are used to preserve the properties of the soft body and ensure stable deformation. Results The experiment was conducted once in a phantom environment and once in an actual surgical environment. The tasks of inserting the surgical instrument into the ventricle using only the navigation information presented through the smart glasses and verifying the drainage of cerebrospinal fluid were evaluated. These tasks were successfully completed, as indicated by the drainage, and the deformation simulation speed averaged 18.78 fps. Conclusions This experiment confirmed that the AR-based method for external ventricular drain surgery was beneficial to clinicians

    Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation

    Get PDF
    A functional genetic screen using loss-of-function and gain-of-function alleles was performed to identify modifiers of tau-induced neurotoxicity using the 2N/4R (full-length) isoform of wild-type human tau expressed in the fly retina. We previously reported eye pigment mutations, which create dysfunctional lysosomes, as potent modifiers; here, we report 37 additional genes identified from ∼1900 genes screened, including the kinases shaggy/GSK-3beta, par-1/MARK, CamKI and Mekk1. Tau acts synergistically with Mekk1 and p38 to down-regulate extracellular regulated kinase activity, with a corresponding decrease in AT8 immunoreactivity (pS202/T205), suggesting that tau can participate in signaling pathways to regulate its own kinases. Modifiers showed poor correlation with tau phosphorylation (using the AT8, 12E8 and AT270 epitopes); moreover, tested suppressors of wild-type tau were equally effective in suppressing toxicity of a phosphorylation-resistant S11A tau construct, demonstrating that changes in tau phosphorylation state are not required to suppress or enhance its toxicity. Genes related to autophagy, the cell cycle, RNA-associated proteins and chromatin-binding proteins constitute a large percentage of identified modifiers. Other functional categories identified include mitochondrial proteins, lipid trafficking, Golgi proteins, kinesins and dynein and the Hsp70/Hsp90-organizing protein (Hop). Network analysis uncovered several other genes highly associated with the functional modifiers, including genes related to the PI3K, Notch, BMP/TGF-β and Hedgehog pathways, and nuclear trafficking. Activity of GSK-3β is strongly upregulated due to TDP-43 expression, and reduced GSK-3β dosage is also a common suppressor of Aβ42 and TDP-43 toxicity. These findings suggest therapeutic targets other than mitigation of tau phosphorylation

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore