3,955 research outputs found

    CPCP violation in DD meson decays at Belle

    Full text link
    CPCP violation and branching fraction measurements in DD decays are interesting topics as any difference with respect to the Standard Model prediction would be an indication of new physics. With the large data sample collected by the Belle detector, which sits at the interaction point of KEKB asymmetric e+ee^{+} e^{-} collider in Japan, we present the results of searches for CPCP violation in D0Vγ (V=ϕ,K0,ρ0)D^{0}\rightarrow V\gamma~(V = \phi, \overline{K}^{*0}, \rho^{0}) decay and the rare DD decay D0γγD^{0}\rightarrow \gamma \gamma.Comment: ICNFP 2016 proceeding

    Similarities between protein folding and granular jamming.

    Get PDF
    Grains and glasses, widely different materials, arrest their motions upon decreasing temperature and external load, respectively, in common ways, leading to a universal jamming phase diagram conjecture. However, unified theories are lacking, mainly because of the disparate nature of the particle interactions. Here we demonstrate that folded proteins exhibit signatures common to both glassiness and jamming by using temperature- and force-unfolding molecular dynamics simulations. Upon folding, proteins develop a peak in the interatomic force distributions that falls on a universal curve with experimentally measured forces on jammed grains and droplets. Dynamical signatures are found as a dramatic slowdown of stress relaxation upon folding. Together with granular similarities, folding is tied not just to the jamming transition, but a more nuanced picture of anisotropy, preparation protocol and internal interactions emerges. Results have implications for designing stable polymers and can open avenues to link protein folding to jamming theory

    Relaxation in open one-dimensional systems

    Full text link
    A new master equation to mimic the dynamics of a collection of interacting random walkers in an open system is proposed and solved numerically.In this model, the random walkers interact through excluded volume interaction (single-file system); and the total number of walkers in the lattice can fluctuate because of exchange with a bath.In addition, the movement of the random walkers is biased by an external perturbation. Two models for the latter are considered: (1) an inverse potential (V \propto 1/r), where r is the distance between the center of the perturbation and the random walker and (2) an inverse of sixth power potential (V1/r6V \propto 1/r^6 ). The calculated density of the walkers and the total energy show interesting dynamics. When the size of the system is comparable to the range of the perturbing field, the energy relaxation is found to be highly non-exponential. In this range, the system can show stretched exponential (e(t/τs)β e^{-{(t/\tau_s)}^{\beta}} ) and even logarithmic time dependence of energy relaxation over a limited range of time. Introduction of density exchange in the lattice markedly weakens this non-exponentiality of the relaxation function, irrespective of the nature of perturbation

    Handling non-compositionality in multilingual CNLs

    Full text link
    In this paper, we describe methods for handling multilingual non-compositional constructions in the framework of GF. We specifically look at methods to detect and extract non-compositional phrases from parallel texts and propose methods to handle such constructions in GF grammars. We expect that the methods to handle non-compositional constructions will enrich CNLs by providing more flexibility in the design of controlled languages. We look at two specific use cases of non-compositional constructions: a general-purpose method to detect and extract multilingual multiword expressions and a procedure to identify nominal compounds in German. We evaluate our procedure for multiword expressions by performing a qualitative analysis of the results. For the experiments on nominal compounds, we incorporate the detected compounds in a full SMT pipeline and evaluate the impact of our method in machine translation process.Comment: CNL workshop in COLING 201

    Differential-Flatness and Control of Quadrotor(s) with a Payload Suspended through Flexible Cable(s)

    Full text link
    We present the coordinate-free dynamics of three different quadrotor systems : (a) single quadrotor with a point-mass payload suspended through a flexible cable; (b) multiple quadrotors with a shared point-mass payload suspended through flexible cables; and (c) multiple quadrotors with a shared rigid-body payload suspended through flexible cables. We model the flexible cable(s) as a finite series of links with spherical joints with mass concentrated at the end of each link. The resulting systems are thus high-dimensional with high degree-of-underactuation. For each of these systems, we show that the dynamics are differentially-flat, enabling planning of dynamically feasible trajectories. For the single quadrotor with a point-mass payload suspended through a flexible cable with five links (16 degrees-of-freedom and 12 degrees-of-underactuation), we use the coordinate-free dynamics to develop a geometric variation-based linearized equations of motion about a desired trajectory. We show that a finite-horizon linear quadratic regulator can be used to track a desired trajectory with a relatively large region of attraction
    corecore