Cold Spring Harbor Laboratory

Cold Spring Harbor Laboratory Institutional Repository
Not a member yet
    13273 research outputs found

    Establishment and Culture of Patient-Derived Breast Organoids

    No full text
    Breast cancer is a complex disease that has been classified into several different histological and molecular subtypes. Patient-derived breast tumor organoids developed in our laboratory consist of a mix of multiple tumor-derived cell populations, and thus represent a better approximation of tumor cell diversity and milieu than the established 2D cancer cell lines. Organoids serve as an ideal in vitro model, allowing for cell-extracellular matrix interactions, known to play an important role in cell-cell interactions and cancer progression. Patient-derived organoids also have advantages over mouse models as they are of human origin. Furthermore, they have been shown to recapitulate the genomic, transcriptomic as well as metabolic heterogeneity of patient tumors; thus, they are capable of representing tumor complexity as well as patient diversity. As a result, they are poised to provide more accurate insights into target discovery and validation and drug sensitivity assays. In this protocol, we provide a detailed demonstration of how patient-derived breast organoids are established from resected breast tumors (cancer organoids) or reductive mammoplasty-derived breast tissue (normal organoids). This is followed by a comprehensive account of 3D organoid culture, expansion, passaging, freezing, as well as thawing of patient-derived breast organoid cultures

    RNA therapeutics

    Get PDF
    “RNA therapeutics” refers to a disease treatment or drug that utilizes RNA as a component. In this context, RNA may be the direct target of a small-molecule drug or RNA itself may be the drug, designed to bind to a protein, or to mimic or target another RNA. RNA has gained attention in the drug-development world, as recent clinical successes and breakthrough technologies have revolutionized the drug-like qualities of the molecule or its usefulness as a drug target. In this special issue ofRNA, we gathered expert perspectives on the past, present, and future of the field, to serve as a primer and also a challenge to the broad scientific community to incorporate RNA into their experimental design and problem-solving process, and to imagine and realize the potential of RNA as a therapeutic drug or target.</jats:p

    Novel GluN2B-Selective NMDA Receptor Negative Allosteric Modulator Possesses Intrinsic Analgesic Properties and Enhances Analgesia of Morphine in a Rodent Tail Flick Pain Model

    Get PDF
    Many cases of accidental death associated with drug overdose are due to chronic opioid use, tolerance, and addiction. Analgesic tolerance is characterized by a decreased response to the analgesic effects of opioids, requiring increasingly higher doses to maintain the desired level of pain relief. Overactivation of GluN2B-containing N-methyl-d-Aspartate receptors is thought to play a key role in mechanisms underlying cellular adaptation that takes place in the development of analgesic tolerance. Herein, we describe a novel GluN2B-selective negative allosteric modulator, EU93-108, that shows high potency and brain penetrance. We describe the structural basis for binding at atomic resolution. This compound possesses intrinsic analgesic properties in the rodent tail immersion test. EU93-108 has an acute and significant anodyne effect, whereby morphine when combined with EU93-108 produces a higher tail flick latency compared to that of morphine alone. These data suggest that engagement of GluN2B as a target has utility in the treatment of pain, and EU93-108 could serve as an appropriate tool compound to interrogate this hypothesis. Future structure-activity relationship work around this scaffold could give rise to compounds that can be co-administered with opioids to diminish the onset of tolerance due to chronic opioid use, thereby modifying their utility

    What is the Future of Preprint Peer Review?

    Get PDF

    Era of gapless plant genomes: innovations in sequencing and mapping technologies revolutionize genomics and breeding

    Get PDF
    Whole-genome sequencing and assembly have revolutionized plant genetics and molecular biology over the last two decades. However, significant shortcomings in first- and second-generation technology resulted in imperfect reference genomes: numerous and large gaps of low quality or undeterminable sequence in areas of highly repetitive DNA along with limited chromosomal phasing restricted the ability of researchers to characterize regulatory noncoding elements and genic regions that underwent recent duplication events. Recently, advances in long-read sequencing have resulted in the first gapless, telomere-to-telomere (T2T) assemblies of plant genomes. This leap forward has the potential to increase the speed and confidence of genomics and molecular experimentation while reducing costs for the research community

    Monosynaptic restriction of the anterograde herpes simplex virus strain H129 for neural circuit tracing

    No full text
    Identification of synaptic partners is a fundamental task for systems neuroscience. To date, few reliable techniques exist for whole brain labeling of downstream synaptic partners in a cell-type-dependent and monosynaptic manner. Herein, we describe a novel monosynaptic anterograde tracing system based on the deletion of the gene UL6 from the genome of a cre-dependent version of the anterograde Herpes Simplex Virus 1 strain H129. Given that this knockout blocks viral genome packaging and thus viral spread, we reasoned that co-infection of a HSV H129 ΔUL6 virus with a recombinant adeno-associated virus expressing UL6 in a cre-dependent manner would result in monosynaptic spread from target cre-expressing neuronal populations. Application of this system to five nonreciprocal neural circuits resulted in labeling of neurons in expected projection areas. While some caveats may preclude certain applications, this system provides a reliable method to label postsynaptic partners in a brain-wide fashion

    Coupling substrate-trapping with proximity-labeling to identify protein tyrosine phosphatase PTP1B signaling networks

    No full text
    The ability to define functional interactions between enzymes and their substrates is crucial for understanding biological control mechanisms; however, such methods face challenges in the transient nature and low stoichiometry of enzyme-substrate interactions. Now, we have developed an optimized strategy that couples substrate-trapping mutagenesis to proximity-labeling mass spectrometry for quantitative analysis of protein complexes involving the protein tyrosine phosphatase PTP1B. This methodology represents a significant shift from classical schemes; it is capable of being performed at near-endogenous expression levels and increasing stoichiometry of target enrichment without a requirement for stimulation of supraphysiological tyrosine phosphorylation levels or maintenance of substrate complexes during lysis and enrichment procedures. Advantages of this new approach are illustrated through application to PTP1B interaction networks in models of HER2-positive and Herceptin-resistant breast cancer. We have demonstrated that inhibitors of PTP1B significantly reduced proliferation and viability in cell-based models of acquired and de novo Herceptin resistance in HER2-positive breast cancer. Using differential analysis, comparing substrate-trapping to wild-type PTP1B, we have identified multiple unreported protein targets of PTP1B with established links to HER2-induced signaling and provided internal validation of method specificity through overlap with previously identified substrate candidates. Overall, this versatile approach can be readily integrated with evolving proximity-labeling platforms (TurboID, BioID2, etc.), and is broadly applicable across all PTP family members for the identification of conditional substrate specificities and signaling nodes in models of human disease

    Antisense oligonucleotide therapy for H3.3K27M diffuse midline glioma

    No full text
    Diffuse midline gliomas (DMGs) are pediatric high-grade brain tumors in the thalamus, midbrain, or pons; the latter subgroup are termed diffuse intrinsic pontine gliomas (DIPG). The brain stem location of these tumors limits the clinical management of DIPG, resulting in poor outcomes for patients. A heterozygous, somatic point mutation in one of two genes coding for the noncanonical histone H3.3 is present in most DIPG tumors. This dominant mutation in the H3-3A gene results in replacement of lysine 27 with methionine (K27M) and causes a global reduction of trimethylation on K27 of all wild-type histone H3 proteins, which is thought to be a driving event in gliomagenesis. In this study, we designed and systematically screened 2'-O-methoxyethyl phosphorothioate antisense oligonucleotides (ASOs) that direct RNase H-mediated knockdown of H3-3A mRNA. We identified a lead ASO that effectively reduced H3-3A mRNA and H3.3K27M protein and restored global H3K27 trimethylation in patient-derived neurospheres. We then tested the lead ASO in two mouse models of DIPG: an immunocompetent mouse model using transduced mutant human H3-3A cDNA and an orthotopic xenograft with patient-derived cells. In both models, ASO treatment restored K27 trimethylation of histone H3 proteins and reduced tumor growth, promoted neural stem cell differentiation into astrocytes, neurons, and oligodendrocytes, and increased survival. These results demonstrate the involvement of the H3.3K27M oncohistone in tumor maintenance, confirm the reversibility of the aberrant epigenetic changes it promotes, and provide preclinical proof of concept for DMG antisense therapy

    Antisense Oligonucleotide Therapeutics for Cystic Fibrosis: Recent Developments and Perspectives

    Get PDF
    Antisense oligonucleotide (ASO) technology has become an attractive therapeutic modality for various diseases, including Mendelian disorders. ASOs can modulate the expression of a target gene by promoting mRNA degradation or changing pre-mRNA splicing, nonsense-mediated mRNA decay, or translation. Advances in medicinal chemistry and a deeper understanding of post-transcriptional mechanisms have led to the approval of several ASO drugs for diseases that had long lacked therapeutic options. For instance, an ASO drug called nusinersen became the first approved drug for spinal muscular atrophy, improving survival and the overall disease course. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Although Trikafta and other CFTR-modulation therapies benefit most CF patients, there is a significant unmet therapeutic need for a subset of CF patients. In this review, we introduce ASO therapies and their mechanisms of action, describe the opportunities and challenges for ASO therapeutics for CF, and discuss the current state and prospects of ASO therapies for CF

    Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity

    Get PDF
    Intrinsic timescales characterize dynamics of endogenous fluctuations in neural activity. Variation of intrinsic timescales across the neocortex reflects functional specialization of cortical areas, but less is known about how intrinsic timescales change during cognitive tasks. We measured intrinsic timescales of local spiking activity within columns of area V4 in male monkeys performing spatial attention tasks. The ongoing spiking activity unfolded across at least two distinct timescales, fast and slow. The slow timescale increased when monkeys attended to the receptive fields location and correlated with reaction times. By evaluating predictions of several network models, we found that spatiotemporal correlations in V4 activity were best explained by the model in which multiple timescales arise from recurrent interactions shaped by spatially arranged connectivity, and attentional modulation of timescales results from an increase in the efficacy of recurrent interactions. Our results suggest that multiple timescales may arise from the spatial connectivity in the visual cortex and flexibly change with the cognitive state due to dynamic effective interactions between neurons


    full texts


    metadata records
    Updated in last 30 days.
    Cold Spring Harbor Laboratory Institutional Repository is based in United States
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇