1,223 research outputs found

    The molecular landscape of colitis-associated carcinogenesis

    Get PDF
    In spite of the well-established histopathological phenotyping of IBD-associated preneoplastic and neoplastic lesions, their molecular landscape remains to be fully elucidated. Several studies have pinpointed the initiating role of longstanding/relapsing inflammatory insult on the intestinal mucosa, with the activation of different pro-inflammatory cytokines (TNF-\u3b1, IL-6, IL-10, IFN-\u3b3), chemokines and metabolites of arachidonic acid resulting in the activation of key transcription factors such as NF-\u3baB. Longstanding inflammation may also modify the intestinal microbiota, prompting the overgrowth of genotoxic microorganisms, which may act as further cancer promoters. Most of the molecular dysregulation occurring in sporadic colorectal carcinogenesis is documented in colitis-associated adenocarcinoma too, but marked differences have been established in both their timing and prevalence. Unlike sporadic cancers, TP53 alterations occur early in IBD-related carcinogenesis, while APC dysregulation emerges mainly in the most advanced stages of the oncogenic cascade. From the therapeutic standpoint, colitis-associated cancers are associated with a lower prevalence of KRAS mutations than the sporadic variant. Epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs, are significantly involved in colitis-associated cancer development and progression. The focus now is on identifying diagnostic and prognostic biomarkers, with a view to ultimately designing patient-tailored therapie

    A coordinate deregulation of microRNAs expressed in mucosa adjacent to tumor predicts relapse after resection in localized colon cancer

    Get PDF
    Up to 20% of colorectal cancer (CRC) node-negative patients develop loco-regional or distant recurrences within 5 years from surgery. No predictive biomarker able to identify the node-negative subjects at high risk of relapse after curative treatment is presently available.Forty-eight localized (i.e. stage I-II) colon cancer patients who underwent radical tumor resection were considered. The expression of five miRNAs, involved in CRC progression, was investigated by qRT-PCR in both tumor tissue and matched normal colon mucosa.Interestingly, we found that the coordinate deregulation of four miRNAs (i.e. miR-18a, miR-21, miR-182 and miR-183), evaluated in the normal mucosa adjacent to tumor, is predictive of relapse within 55 months from curative surgery.Our results, if confirmed in independent studies, may help to identify high-risk patients who could benefit most from adjuvant therapy. Moreover, this work highlights the importance of extending the search for tissue biomarkers also to the tumor-adjacent mucosa

    A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: an application for bladder cancer treatment

    Get PDF
    Stealth pH-responsive liposomes for the delivery of therapeutic proteins to the bladder epithelium were prepared using methoxy-poly(ethylene glycol)5kDa-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (mPEG5kDa-DSPE) and stearoyl-poly(ethylene glycol)-poly(methacryloyl sulfadimethoxine) copolymer (stearoyl-PEG-polySDM), which possesses an apparent pKa of 7.2. Liposomes of 0.2:0.6:100, 0.5:1.5:100 and 1:3:100 mPEG5kDa-DSPE/stearoyl-PEG-polySDM/(soybean phosphatidylcholine + cholesterol) molar ratios were loaded with bovine serum albumin (BSA) as a protein model. The loading capacity was 1.3% w/w BSA/lipid. At pH 7.4, all liposome formulations displayed a negative zeta-potential and were stable for several days. By pH decrease or addition to mouse urine, the zeta potential strongly decreased, and the liposomes underwent a rapid size increase and aggregation. Photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM) analyses showed that the extent of the aggregation depended on the stearoyl-PEG-polySDM/lipid molar ratio. Cytofluorimetric analysis and confocal microscopy showed that at pH 6.5, the incubation of MB49 mouse bladder cancer cells and macrophages with fluorescein isothiocyanate-labelled-BSA (FITC-BSA) loaded and N-(Lissamine Rhodamine B sulfonyl)-1, 2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine triethylammonium salt (rhodamine-DHPE) labelled 1:3:100 mPEG5kDa-DSPE/stearoyl-PEG-polySDM/lipid molar ratio liposomes resulted in a time-dependent liposome association with the cells. At pH 7.4, the association of BSA-loaded liposomes with the MB49 cells and macrophages was remarkably lower than at pH 6.5. Confocal images of bladder sections revealed that 2 h after the instillation, liposomes at pH 7.4 and control non-responsive liposomes at pH 7.4 or 6.5 did not associate nor delivered FITC-BSA to the bladder epithelium. On the contrary, the pH-responsive liposome formulation set at pH 6.5 and soon administered to mice by bladder instillation showed that, 2 h after administration, the pH-responsive liposomes efficiently delivered the loaded FITC-BSA to the bladder epitheliu

    Serotonin-Secreting Neuroendocrine Tumours of the Pancreas

    Get PDF
    Background: Serotonin-secreting pancreatic neuroendocrine tumours (5-HT-secreting pNETs) are very rare, and characterised by high urinary 5-hydroxyindole-acetic acid (5-HIAA) levels (or high serum 5-HT levels). Methods: Patients with 5-HT-secreting pancreatic neoplasms observed in our unit (1986-2015) were included. Diagnosis was based on urinary 5-HIAA or serum 5-HT levels. Results: Seven patients were enrolled (4 M/3 F), with a median age of 64 (range 38-69) years. Two patients had a carcinoid syndrome. Serum 5-HT was elevated in four patients. Urinary 5-HIAA levels were positive in six patients. The median tumour size was 4.0 (range 2.5-10) cm. All patients showed liver metastases at diagnosis. None underwent resective surgery; lymph node/liver biopsies were taken. Six lesions were well-differentiated tumours and one a poorly differentiated carcinoma (Ki67 range 3.4-70%). All but one patient received chemotherapy. Four patients received somatostatin analogues; three patients underwent ablation of liver metastases. One patient is alive with disease 117 months after observation. All the others died from disease progression after a follow-up within 158 months. Conclusions: Primary 5-HT-secreting pNETs are mostly metastatic to the liver; patients are not amenable to resective surgery. Despite high 5-HIAA urinary levels, few patients present with carcinoid syndrome. A five-year survival rate of 42.9% may be achieved with multimodal treatment

    Targeted therapies in the management of metastatic bladder cancer

    Get PDF
    The management of metastatic urothelial carcinoma (UC) of the bladder is a common and complex clinical challenge. Despite the fact that UC is one of the most frequent tumors in the population, long term survival for metastatic disease remains low, and chemotherapy is curative for only a small minority of patients. UC is genetically heterogeneous, and it is surrounded by a complex tissue microenvironment. The problems of clinical practice in the field of metastatic bladder cancer have begun to stimulate translational research. Advances in the understanding of the molecular biology of urothelial cancer continue to contribute to the identification of molecular pathways upon which new therapeutic approaches can be targeted. New agents and strategies have recently been developed which can direct the most appropriate choice of treatment for advanced disease. A review of literature published on the targeted therapy for metastatic bladder cancer is presented, focusing on the molecular pathways shut down by the new therapeutic agents

    Genetic Features of Metachronous Esophageal Cancer Developed in Hodgkin's Lymphoma or Breast Cancer Long-Term Survivors: An Exploratory Study.

    Get PDF
    Background Development of novel therapeutic drugs and regimens for cancer treatment has led to improvements in patient long-term survival. This success has, however, been accompanied by the increased occurrence of second primary cancers. Indeed, patients who received regional radiotherapy for Hodgkin's Lymphoma (HL) or breast cancer may develop, many years later, a solid metachronous tumor in the irradiated field. Despite extensive epidemiological studies, little information is available on the genetic changes involved in the pathogenesis of these solid therapy-related neoplasms. Methods Using microsatellite markers located in 7 chromosomal regions frequently deleted in sporadic esophageal cancer, we investigated loss of heterozygosity (LOH) and microsatellite instability (MSI) in 46 paired (normal and tumor) samples. Twenty samples were of esophageal carcinoma developed in HL or breast cancer long-term survivors: 14 squamous cell carcinomas (ESCC) and 6 adenocarcinomas (EADC), while 26 samples, used as control, were of sporadic esophageal cancer (15 ESCC and 11 EADC). Results We found that, though the overall LOH frequency at the studied chromosomal regions was similar among metachronous and sporadic tumors, the latter exhibited a statistically different higher LOH frequency at 17q21.31 (p = 0.018). By stratifying for tumor histotype we observed that LOH at 3p24.1, 5q11.2 and 9p21.3 were more frequent in ESCC than in EADC suggesting a different role of the genetic determinants located nearby these regions in the development of the two esophageal cancer histotypes. Conclusions Altogether, our results strengthen the genetic diversity among ESCC and EADC whether they occurred spontaneously or after therapeutic treatments. The presence of histotype-specific alterations in esophageal carcinoma arisen in HL or breast cancer long-term survivors suggests that their transformation process, though the putative different etiological origin, may retrace sporadic ESCC and EADC carcinogenesis

    Immunonutrition before esophagectomy: Impact on immune surveillance mechanisms

    Get PDF
    Preoperative oral immunonutrition was demonstrated to improve immune response and to decrease the infection rate in patients with cancer. This study aimed to assess how immunonutrition could influence the immune cell response in the mucosal microenvironment of esophageal adenocarcinoma. Therefore, A prospective cohort of consecutive patients undergoing esophagectomy for esophageal adenocarcinoma was enrolled. A subgroup of them was given preoperative oral immunonutrition with Oral Impact and was compared to those who received no preoperative supplementation. Mucosal samples from healthy esophagus were obtained at esophagectomy. Histology, immunohistochemistry, gene expression analysis, and cytofluorimetry were performed. Markers of activation of antigen-presenting cells (CD80, CD86, and HLA-I), innate immunity (TLR4 and MyD88), and cytotoxic lymphocyte infiltration and activation (CD8, CD38, CD69, and CD107) were measured. In all, 50 patients received preoperative Oral Impact and 129 patients received no nutritional support. CD80, CD86, MyD88, and CD69 messenger RNA expression was significantly increased in patients receiving immunonutrition compared to controls. In the subgroup of patients with stages I-II cancer, the rate of epithelial cells expressing CD80 and HLA-ABC was significantly higher in those receiving immunonutrition compared to controls as well as CD8+ CD28+ cell rate. Immunonutrition administration before surgery was significantly associated to increased degranulating CD8 and natural killer cells (CD107+) infiltrating the healthy esophageal mucosa. All the comparisons were adjusted for cancer stage and preoperative therapy. In conclusion, in healthy esophageal mucosa of patients undergoing esophagectomy, a 5-day course of immunonutrition enhances expression of antigen-presenting cells activity and increased CD8+ T cell activation and degranulating activity. Further studies are warranted to understand the clinical implication in terms of cancer recurrence

    Transcribed ultraconserved noncoding RNAs (T-UCR) are involved in Barrett's esophagus carcinogenesis.

    Get PDF
    Barretts esophagus (BE) involves a metaplastic replacement of native esophageal squamous epithelium (Sq) by columnar-intestinalized mucosa, and it is the main risk factor for Barrett-related adenocarcinoma (BAc). Ultra-conserved regions (UCRs) are a class non-coding sequences that are conserved in humans, mice and rats. More than 90% of UCRs are transcribed (T-UCRs) in normal tissues, and are altered at transcriptional level in tumorigenesis. To identify the T-UCR profiles that are dysregulated in Barretts mucosa transformation, microarray analysis was performed on a discovery set of 51 macro-dissected samples obtained from 14 long-segment BE patients. Results were validated in an independent series of esophageal biopsy/surgery specimens and in two murine models of Barretts esophagus (i.e. esophagogastric-duodenal anastomosis). Progression from normal to BE to adenocarcinoma was each associated with specific and mutually exclusive T-UCR signatures that included up-regulation of uc.58-, uc.202-, uc.207-, and uc.223- and down-regulation of uc.214+. A 9 T-UCR signature characterized BE versus Sq (with the down-regulation of uc.161-, uc.165-, and uc.327-, and the up-regulation of uc.153-, uc.158-, uc.206-, uc.274-, uc.472-, and uc.473-). Analogous BE-specific T-UCR profiles were shared by human and murine lesions. This study is the first demonstration of a role for T-UCRs in the transformation of Barretts mucosa
    corecore